

Executive Summary

The Province of Ontario introduced the Green Energy and Green Economy Act, 2009, which requires public sector agencies to collect and report on their annual energy consumption. The Green Energy and Green Economy Act was repealed on January 1, 2019. All reporting requirements have moved to the *Electricity Act*, 1998 under Regulation 507/18. The Regulation outlines requirements for energy conservation and demand management plans in an effort to forgo the expensive construction of new generation stations, secure adequate supply, and improve system reliability.

The City of Sault Ste. Marie's Energy Conservation and Demand Management Plan was compiled using the expertise and knowledge of municipal staff, best practices from communities across Ontario, and the assistance of a consulting firm for energy saving estimates. The Plan considers past and future projects related to organizational integration, data management, supply management, infrastructure improvements, renewable energy, operations and maintenance, and education and awareness.

City staff have set realistic goals and objectives that are in line with the Municipality's vision, mission, and values.

This report will assist the City in meeting these goals, including a 5% energy reduction target over the next 5 years. Municipal facilities reported under *Regulation* 507/18 utilize an average of 47,880,856 ekWh at an approximate cost of \$3,957,815 million dollars. Between 2011 and 2016 the City realized a 7% reduction in energy consumption and a 32% reduction in greenhouse gas emissions.

Energy management is a critical piece of municipal operations and service delivery, and provides an opportunity to create efficiencies and cost savings for local tax payers.

This document will meet the City's legislative requirements, and act as a guiding document for the implementation of energy efficiency projects and programs between 2019 and 2023. An update to this document will be required every 5 years and will remain flexible to accommodate the ever changing complexity of municipal operations.

Acknowledgements

The Municipal Environmental Initiatives Committee wishes to thank those who contributed ideas, input, and data to this plan, including:

- Mike Blanchard, Manager of Waste Management;
- Mark Britton, Conservation & Demand Management Officer -PUC Services Inc.;
- Jake Bruzas; Manager of Audits and Capital Planning;
- Roger Caron, Supervisor Building Services;
- Frank Coccimiglio, Manager of Information Technology;
- Samantha Coccimiglio, Waste Management Intern;
- Dan Crozier, Assistant Fire Chief, Support Services Division;
- Brent Lamming, Director of Community Services;
- Tim Gowans, Manager of Purchasing;
- Nicole Maione, Manager of Transit Services;
- Gary Mancuso, Fleet & Building Services Technical Police Services
- Matthew McDonald, Acting Director of Public Libraries;
- Virginia McLeod, Manager of Recreation and Culture Division;
- Jason Mihailiuk, Manager of Facilities & Maintenance—CD&ES;
- Roger Nenonen, Manager of Cemeteries;
- Travis Reid, Area Coordinator Parks;
- Shelley Schell, Chief Financial Officer;
- Catherine Taddo, Land Development and Environmental Engineer;
- Paul White, Manager of Equipment & Building Maintenance—PW&ES; and
- Madison Zuppa, Area Coordinator—Environmental Services

Table of Contents

Executive Summary 2
Acknowledgements
Table of Contents 4
List of Tables
List of Figures
List of Acronyms
Introduction
Background Information7
Methodology
Vision, Mission and Values10
Target10
Goals10
Measurement of Progress11
Corporate Energy Team11
Present State of Corporate Energy
Future State of Corporate Energy22
Conclusion
Appendices

List of Tables

Table 1: S.W.O.T. Analysis Results	9
Table 2: Corporate Energy Team	12

List of Figures

Figure 1: Total Electricity (kWh) Consumption Per Year13
Figure 2: Total Natural Gas (m ³) Consumption Per Year
Figure 3: Total GHG Emissions (kg) Per Year13

List of Acronyms

CDD	Cooling Degree Days
CD&ES	Community Development and Enterprise Services
CDM	Energy Conservation and Demand Management Plan
ekWh	Equivalent kilowatt hours
FIT	Feed-In-Tariff
GEA	Green Energy Act
GHG	Greenhouse Gas
GIS	Geographic Information System
GWh	Gigawatt hour
HDD	Heating Degree Days
HOEP	Hourly Ontario Energy Price
IESO	Independent Electricity System Operator
kW	kilowatt
kWh	kilowatt hours
LAS	Local Authority Services
LED	Light Emitting Diode
m ³	Cubic metres
MECO	Municipal Energy Conservation Officer
NRCan	Natural Resources Canada
NOMEN	Northern Ontario Municipal Environmental Network
OPA	Ontario Power Authority
PW&ES	Public Works and Engineering Services
RPP	Regulated Price Plan
TWh	Terawatt hours

Introduction

Ontario's Long Term Energy Plan (2013) outlines a Conservation First policy that focuses on an energy savings target of 30TWh by 2032¹ in an effort to defer major capital investments in generation and transmission infrastructure. Given that municipalities are large consumers of energy, it is critical that local governments take action to be in line with Provincial goals. "Municipalities spent an estimated \$917 million for electricity and \$105 million for natural gas in 2014" and consumed over 6,275 GWh of electricity and 425 million m³ of natural gas.² By conserving energy, municipalities will reduce associated greenhouse gas (GHG) emissions, energy related costs, and interruptions in Ontario's energy supply.

Regulation 397/11 under the *Green Energy* and Green Economy Act, 2009 (GEA, 2009), published on August 25, 2011, requires municipalities to report on their consumption and GHG emissions annually. The Green Energy and Green *Economy Act* was repealed on January 1, 2019. All reporting requirements have moved to the *Electricity Act*, 1998 under Regulation 507/18. The intent is help local government to better understand and manage energy, participate in conservation and demand

management programs, and facilitate provincial benchmarking.

The Municipality is also required to "prepare, publish, make available to the public, and implement energy conservation and demand management plans" every five years beginning on July 1, 2014. The plans should be composed of the Municipality's annual consumption and GHG emissions, and a summary of past and future projects directed at conserving energy and improving demand response.³

This the report presents Energy Conservation and Demand Management Plan (CDM) for the Corporation of the City of Sault Ste. Marie for 2019 through 2023, and provides a strategy to reduce energy consumption in municipal facilities and operations, associated costs. and the corporate carbon footprint. significant There are advantages to having a CDM, including freeing up funds that could be better directed towards essential services and assist in branding the community as environmentally conscious. The CDM will be an evolving document that will meet regulatory requirements and increase the City's long term efficiency and effectiveness.

1 Government of Ontario. 2013. Achieving Balance: Ontario's Long-Term Energy Plan. P.21.

2 ICF Canada. 2018. Ontario Municipality Energy Profile. Accessed on: 05 June 2019. Available at: http://www.ieso.ca/en/Learn/Conservation-and-Energy-Efficiency/Municipal-Energy-Profile , 8 & 17.

3 *Green Energy and Green Economy Act: Regulation 397/11* Energy Conservation and Demand management Plans. [Online]. Date Accessed: 16 June 2014. Available at: http://www.e-laws.gov.on.ca/html/source/regs/english/2011/elaws_src_regs_r11397_e.htm

Background Information

Sault Ste. Marie is a city in Northern Ontario, located on St. Marys River in the heart of the Great Lakes with a population of 75,000 residents. The community's reputation in the energy sector has been long standing as the "Alternative Energy Capital of North America".

The City of Sault Ste. Marie has been a leader in the provision of efficient, affordable and quality services supporting a progressive and sustainable for community over а century. Employing over 970 full-time employees corporate wide (including Sault Ste. Marie Police Service and Sault Ste. Marie Public Library), the City provides essential services to the community related to: emergency response; public works and transportation; waste; community services; recreation and culture; museum and libraries; planning and development; building permits and by-law enforcement; immigration and settlement; road construction; and wastewater treatment.

The City is committed to not only being fiscally responsible, but also а government that values environmental stewardship and minimizing the footprint of its activities. In 2007, City Council passed a resolution establishing the Municipal Environmental Initiatives (Green) Committee made up of Councillors, staff City and from representatives the Local

Distribution Company (PUC Services Inc.) to identify current environmental activities and develop a plan to reduce the corporate carbon footprint. The Green Committee works to develop project ideas, identify potential funding opportunities, and implement initiatives that will achieve these goals.

Part of the Green Committee's responsibility is to develop a CDM in an effort to reduce the energy use in City-owned facilities and to meet the public sector requirements under *Regulation* 507/18. This *Regulation* can be found in Appendix A.

The City of Sault Ste. Marie reports energy consumption for 49 major facilities, including maintenance and storage garages, 2 major wastewater treatment facilities, 5 large pumping stations, and 17 small pumping stations. The first annual submission was made on July 1, 2013. The 2017 submission can be found in Appendix B. These facilities cover approximately 89,421 square meters (962,517 square feet) with the average age being 40 years. Municipal facilities reported under Regulation 507/18 utilize an average of 47,880,856 ekWh of energy annually at an approximate cost of \$3,957,815 million dollars. Between 2011 and 2016 the City realized a 7% reduction in energy consumption and a 32% reduction in greenhouse gas (GHG) emissions.

Methodology


The Area Coordinator—Environmental Services reviewed the Ministry of Energy's "Guide Preparing to **Conservation and Demand Management** Plans" which provides an outline on how to meet the legislative requirements; report on energy consumption; develop goals and objectives; develop energy saving measures; report on renewable energy; report on the results, and administer the plan.

Staff reviewed City policies to ensure the goals and objectives of the CDM fit well with the corporate directives and Strategic Plan.

In 2013, the City of Sault Ste. Marie undertook a major facility asset management review to assist staff in capital planning for the next 20 years. This process was critical due to the condition of aging municipal infrastructure, and will help with project prioritization in years to come. The recommended improvements for the next 5 years and those completed in the last 5 years have been included in Appendix C of this report.

In 2007, the City began an annual energy audit program, which has identified various energy efficiency opportunities in 7 municipal facilities. These opportunities were determined though walkthroughs by the consultant and discussion with the facility managers, accompanied by a review of energy dependent equipment. The recommendations outlined in these energy audits are presented in Appendix D, and were reviewed with the appropriate building manager to determine what has been completed to date and what is outstanding. It is important to note that not all recommendations made through the energy audit will be implemented.

The Area Coordinator-Environmental Services collected energy data from the City's utility bills and inputted it into the provincial templates provided. The remaining content of the CDM was provided by City staff. Involving building managers is essential, given that they have the experience and expertise to identify energy saving opportunities and implement projects in their respective facilities. City staff have been engaged in the process from the beginning and provided much of the content for the CDM.

Methodology

Interviews were conducted with the facility managers and a S.W.O.T. (strengths, weaknesses, opportunities, and threats) analysis was completed on March 21, 2018, with City staff that are involved in energy management. The results of the S.W.O.T. are highlighted in Table 1.

Table 1: S.W.O.T. Analysis Results

Strengths	Weaknesses		
Existing energy management plan; cross section of staff; support of Council and senior management; knowledge base; relationship with utilities; Green Committee financial resources; links to strategic plan and asset management plan; energy audits; success of past projects; historical data.	Aging infrastructure; inefficient facilities; lack of funding and budget; staff resistance to change; unrealistic goals; staff communication; and competing priorities.		
Opportunities	Threats		
Funding programs from upper levels of government; technological innovations; public opinions; alternative energy infrastructure; location; educational institutions.	Weather; variability of external funding; aging population and limited tax base; rising cost of energy; single industry economy; and changes in government.		

The majority of the S.W.O.T factors were consistent with the previous CDM. However, the following items were removed: energy audits (strength); funding application process, unable to track real time energy use, limited building automation, and staff turnover (weakness); and legislative requirements, lessons learned, and FIT program (opportunities).

The information collected for the CDM was inputted into a draft document and circulated to the members of the Green Committee for review and appropriate feedback. The CDM is meant to act as a guide for staff, but is an evolving document that will need to be flexible and adaptable to the meet the City's needs.

Vision, Mission, and Values

The City of Sault Ste. Marie's **vision** is to be the leading innovative, dynamic and efficient municipal corporation in the Province of Ontario. The City's **mission** is to promote, encourage and lead economic and social growth within our community through the effective provision of municipal services and the development of community partnerships. The City **values** environmental stewardship through the wise use of resources to maintain and create a sustainable city for future generations.

Target

Reduce energy consumption by 5% by 2023 through the implementation of costeffective energy management initiatives.

Goals

The Corporation of the City of Sault Ste. Marie has identified the following goals to be achieved through the CDM:

- 1. Identify low-cost opportunities and cost effective capital upgrades to achieve cost savings and/or avoidance;
- 2. Establish realistic, but aggressive energy reduction targets;
- 3. Increase useful life and efficiency of equipment and facilities;
- 4. Identify and implement the use of innovative energy efficiency technology;
- 5. Develop an awareness campaign for staff and provide recognition to those committed to a culture of conservation;
- 6. Ensure energy efficiency and GHG emissions reduction are incorporated in the decision making process; and
- 7. Monitor, evaluate, and measure corporate energy use.

Measurement of Progress

The measurement of progress will be based on a variety of indicators:

- *I.* Establish a Corporate Energy Team;
- 2. Establish an improved energy monitoring and tracking system;
- 3. Measure the difference in GHG emissions and energy consumption from baseline year;
- 4. Track savings or avoided costs;
- 5. Number of staff trained and educated in the area of energy conservation and demand management; and
- 6. Number of conservation measures implemented.

Corporate Energy Team

In order to achieve the goals and objectives of this plan and integrate energy as a priority across the Corporation, a Corporate Energy Team was established. The Team consists of cross-sectional set of leaders from across the municipality representing various departments and divisions. The following staff have been identified to meet regularly to identify ways to integrate energy management across the Corporation:

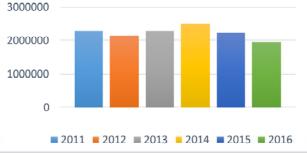
Corporate Energy Team

Table 2: Corporate Energy Team

Area Coordinator—Environmental Services	PW&ES / Waste Management
Building Supervisor	PW&ES / Building Services
Land Development & Environmental Engineer	PW&ES / Engineering & Construction
Manager of Equipment & Building Maintenance	PW&ES
Area Coordinator – Parks	PW&ES
Assistant Fire Chief - Operations	Fire Services / Support Services
Manager of Cemeteries	CD&ES / Cemeteries
Manager of Facilities & Maintenance	CD&ES / Community Centres
Supervisor – Community Services	CD&ES / Recreation & Culture
Manager of Transit	CD&ES / Transit Services
Manager of Information Technology	Corporate Services / IT
Manager of Audits & Capital Planning	Finance
Manager of Purchasing	Finance / Purchasing
Conservation & Demand Management Officer	PUC Services Inc.

The City of Sault Ste. Marie recognizes that energy management is essential for the efficient and effective operation of municipal facilities and service delivery. The City currently utilizes natural gas and electricity in corporate facilities and to treat and transport wastewater.

Energy Usage


Since 2013, the City of Sault Ste. has been collecting and Marie reporting its energy use and associated GHG emissions. Energy consumption data was provided to the Ministry of Energy for the years 2011 through 2016. The City of Sault Ste. Marie utilized an average of kWh of electricity, 24,119,296 2,232,967 m³ of natural gas annually during that period of time. It is important to note that the City of Sault Ste. Marie no longer utilizes fuel oil for its operations.

During this time period the City saw а 1% increase in electricity consumption, a 15% decrease in natural gas consumption, and a 7% decrease in energy consumption overall. The City has seen a consistent drop in GHG emissions over time due to a reduction in emission factor for electricity, reduction in fossil fuel usage, and selling surplus assets. From 2011 to 2016 a 32% GHG emissions reduction has been achieved.

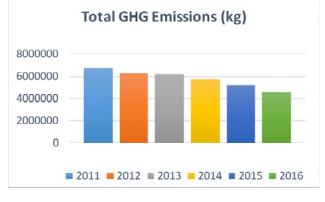

Total Electricity Consumption (kWh) 2500000 24000000 23000000 22000000 2011 2012 2013 2014 2015 2016

Figure 1. Total Electricity (kWh) Consumption Per Year

Figure 2. Total Natural Gas (m³) Consumption Per Year Total Natural Gas Consumption (m³)

Suppliers

Electricity is supplied by PUC Distribution Inc. and natural gas is supplied by Union Gas. Fuel Oil is no longer utilized for heating municipal facilities. Most municipal facilities only have one meter for electricity and one meter for natural gas, which provides total energy consumed for the site.

Variables

Energy consumption can vary from year to year depending on the weather, and from building to building depending on occupancy and condition. If the community experiences more heating degree days (HDD) or cooling degree days (CDD) than normal, heating and will cooling demands vary. Furthermore, the more occupants in a facility can result in a higher demand for energy. Municipal facilities offer a variety of services to the public making occupancy of facilities irregular, especially during special events. Regulating temperature can also be challenging in certain types of buildings (e.g. pools and arenas). For example, customer service is critical to municipalities and keeping a pool at a comfortable temperature may be rated more important than the

subsequent energy costs. Indicators such as employee comfort are also difficult to quantify.

Changes in the number of facilities in the municipal portfolio or service delivery will play a significant role in the energy consumed and GHG emissions produced. For example, the Municipality moved the Korah Branch Library from its original location (built in 1960) to the Northern Community Centre (built in 2011). Energy consumption will no longer be recorded at the old location because it was considered surplus property and sold. However, energy utilized at the new facility variance in may cause а consumption data. It is important to understand that progress must be measured on energy consumed over sheer cost savings given the cost of energy is continually rising. Cost avoidance will play a critical role in understanding overall success.

Variables Continued

Energy costs will depend on whether the utility account qualifies under the Regulated Price Plan (RPP) or the whole sale rate. RPP customers are normally small accounts that will pay tiered prices or time of use prices if a smart meter has been installed.⁴ Whole sale customers are normally larger consumers and pay market price for electricity or the Ontario Hourly Energy Price (HOEP) if an interval meter has been installed.

Costs are also influenced by other charges including the regulatory, debt retirement, delivery, Global Adjustment (previously Provincial Benefit) and Ontario Clean Energy Global Benefit. Adjustment "accounts for differences between the market price and the rates paid regulated and contracted to generators and for conservation and demand management programs",⁵ where the Ontario Clean Energy Benefit "is helping Ontario families, farms and small businesses through the transition to a cleaner, modern electricity system by providing a 10 cent rebate on per applicable electricity charges and taxes".⁶

Concerns

Climate change, pollution, protecting the environment, and reducing the dependence on fossil fuels are all relevant concerns for society today. Energy reliability and reducing vulnerability is also critical in the face of major events, like the blackout, 2003 Montreal and Toronto ice storms, and local flooding events.

Renewable energy is part of creating a sustainable future, and the City of Sault Ste. Marie explored rooftop solar projects; however, restrictions to transmission capacity has limited project development in the Algoma region. If no upgrades are made to the infrastructure in the region this will continue to be a challenge.

Electricity prices are predicted to rise over the next two decades and any means to mitigate costs will benefit the City's bottom line. Energy pricing can be volatile and market dependent creating a challenge to City staff during the budgeting process. An annual increase of 3.5% to electricity prices could add approximately \$137,653 to the \$3.9 million (2016 dollars) already spent.

⁴ IESO. Price Overview. [Online]. Date Accessed: 28 January 2014. Available at: http://www.ieso.ca/imoweb/media/md_prices.asp. 5 IESO. Global Adjustment. [Online]. Date Accessed: 28 January 2014. Available at: http://www.ieso.ca/imoweb/siteshared/ electricity_bill.asp.

⁶ Ministry of Energy. Ontario Clean Energy Benefit. [Online]. Date Accessed: 28 January 2014. Available at: http://www.energy.gov.on.ca/en/clean-energy-benefit/#.Uufhvfko42w.

In an effort to maintain the City of Sault Ste. Marie's current energy budget and improve the condition of corporate facilities a number of projects have already been pursued.

Organizational Integration

In September 2007, City Council approved a budget of \$150,000 to develop energy related projects and hire a full time staff complement to implement said projects. Identification and guidance on projects would be provided by the Municipal Environmental Initiatives Committee, also known as the Green Committee, with staff representatives from relevant departments across the Corporation.

In January 2009, the Environmental Initiatives Coordinator was hired to support and develop corporate programs within municipal operations to reduce the corporate carbon footprint, including the development and implementation of the CDM.

In May 2009, City Council passed a resolution designating the Environmental Initiatives Coordinator Position as the Municipal Energy Conservation Officer (MECO) responsible for being the local energy champion and creating a culture of conservation throughout their respective communities.

The Environmental Initiatives Coordinator worked alongside the Energy Analyst from the City of Thunder Bay to establish the Northern Municipal Environmental Ontario (NOMEN). This Network group stemmed from the dissolution of the MECO working group. NOMEN provides an open forum for municipal staff to communicate ideas about environmental and energy initiatives undertaken in their respective communities. The Network has representatives from communities across Northern Ontario that discuss their success and challenges. Through teleconferences, guest speakers, webinars and face-to-face meetings the helping northern group is municipalities identify opportunities for improved sustainability.

Energy Data Management

City staff collected energy consumption and cost data dating back to 2007 from vendor invoices. This data is continuously inputted into a database to establish historical trends. Quality control measures have been implemented to ensure the best possible data. The initial review and development of the energy database resulted in the discovery of old municipal locations that no longer required service, including unrented community rinks. Service can be restored to the locations if they are utilized in the future.

The City utilizes the PUC Services Inc. and Union Gas online account systems to download information and enter it into databases to meet the reporting requirements of Regulation 507/18. Consumption data, and will assist in measuring the City's energy management progress. Consumption data for the year 2017 was prepared in parallel to the CDM Plan for submission on July 1, 2019. and can be found in Appendix B.

Interval meters have been installed on several facilities, including Public Works, Civic Centre, John Rhodes Community Centre, GFL Memorial Gardens and the East End Wastewater Treatment Facility to track hourly electricity consumption. The intent is to increase the accuracy of the electricity bills at these facilities and find potential opportunities for load shifting and demand response. The information is not currently used for real time monitoring. The City's Information Technology Division is investigating the development of a dashboard to display this data.

City staff are always hearing "you can't manage what you don't measure". In order to improve the management of energy, the City completed a pilot project at Transit Services with an energy management system that assisted in up to date monitoring of electricity usage. This has allowed staff to improve operations and provided alerts for excessive variations in consumption.

The City of Sault Ste. Marie hired Acorn Information Solutions to complete energy density mapping for the community. The mapping project identified energy reduction opportunities throughout the community, and visualized energy consumption utilizing GIS. Hot spot analysis was also completed at the neighbourhood level. Supplemental funding for this project was secured through PUC Services and the Ministry of Energy's Municipal Energy Plan Program.

Energy Supply Management

The City of Sault Ste. Marie is currently purchasing energy on the spot market from PUC Services Inc. for electricity and Union Gas for natural gas. Staff moved away from long term contracts for natural gas in an effort to take advantage of lower spot market prices. City staff regularly review relevant information for price increases and opportunities for savings.

Operations and Maintenance

A professional consultant was hired to complete energy audits on several facilities municipal to better understand: energy consumption and opportunities for savings; demand; potential funding and sources; innovative technologies. An initial review of the energy consumption data was completed, followed by an on-site visit to complete an inventory of equipment and building components. Information that was collected was reviewed by the consultant and brought back to the appropriate staff for review and suggestions. The consultant worked closely with the building managers given that they are responsible for daily operations at their respective facilities.

Infrastructure Improvements

The City of Sault Ste. Marie typically implements energy efficiency projects with a 5 year payback, particularly when funding programs are utilized to improve the business case. Many benefits beyond cost savings and/or avoidance can be achieved, including modernization of the facility, reduced maintenance costs opportunities to staff to improve knowledge of innovative technology, and improving comfort of the facility.

Lighting retrofits have been the primary focus, including installing T8, T5 and LED lamps, electronic ballasts, LED EXIT signs, wall packs, traffic signals and parking lot lighting, and improving lighting controls through the use of occupancy sensors. Lighting only an energy is not saving opportunity, but often improves the working conditions for employees.

PUC implement an LED streetlighting replacement program with approximately 9,000 units. Upgrading to LED fixtures is expected to save over \$1 million a year through energy and operations and maintenance savings. Overall project had a payback of less than 10 years. The Information Technology Division has begun server consolidation by adopting virtualization and decreased the corporate printer fleet.

Facilities across the Corporation have had major upgrades including, windows, ventilation system, air handling units, chiller replacement, hot water heaters, natural gas infrared heaters replacing electric in-floor boiler replacement, heating, automated doors, garage roof replacement, refrigeration unit upgrade, and insulation (including weather stripping and sealants). Estimates on energy and cost savings from the completed projects have generally been provided through the energy audits and asset management review, but real energy and cost savings have not been pursued to date.

Renewable Energy

Ontario has made a commitment to eliminate the use of coal and develop the renewable energy sector. The City currently does not own or operate any major renewable energy projects. The City leased the roof at the Northern Community Centre to PUC Services Inc. to install a 250 kW solar photovoltaic system on the roof; however, a contract was not obtained through the Feed-In-Tariff (FIT) program. A number of facilities have been reviewed for potential solar applications, and City staff will continue to investigate other opportunities to participate in the renewable energy sector.

The City has installed solar powered stop lights and pay and display units for municipal parking.

Staff Education & Awareness

Over the years the City has encouraged the community to participate in provincial and global initiatives, including Energy Conservation Week and Earth Hour. The City has also participated in regional tradeshows several to educate the public about municipal including East initiatives. the Algoma Stewardship Council's Green Expo, Green & Healthy Living Expo, ULERN's Renewable Energy Workshop, and the Sault Ste. Marie Region Conservation Authority's Community Environmental Education Family Fun Day. Staff have presented best practices to peers at the LAS Connections Symposium, Great Lakes Power Transmission, Rotary Club, Lake Superior State University, Steam Engineers President's Ball, and Zion Lutheran Church. Through these events, the Green Committee has raised the City's profile as an environmental leader.

City staff have attended the Dollars to \$ense Workshops offered by Natural Resources Canada (NRCan) where they learned best practices for developing an integrated energy management plan, identify energy saving opportunities, energy monitoring, and energy efficiency financing options.

Staff Education & Awareness Continued

Other events that staff have attended to include the Region of Peel Energy Summit, LAS Connections Symposium, LightSavers Canada Advanced LED Workshop, and OPA's Integrated Regional Energy Planning & Siting consultation.

The Green Committee has invited a number of guest speakers, including Miller. Environmental Gord Commissioner of Ontario; Peter Love, Ontario's Chief Energy Conservation Officer: Glenda Gies. Executive Director of Waste Diversion Ontario; Peter Gorrie, Free-lance Journalist -Electric Vehicles; and Paul Gregory, Outreach Officer for the Green Municipal Fund.

Team Green, an interdepartmental group of summer students, has implemented an annual corporate engagement event called Green Days. Since 2008, the students have incorporated vegetable and flower gardens, commemorative trees, and decorative rocks into the event; and staff raised awareness through environmentally themed tradeshow displays and trivia challenges that give staff an opportunity to win green prizes and raise money for local charities including Clean North,

Canadian Tire JumpStart program, Red Cross Community Garden, Heart and Stroke Foundation, and the YMCA Strong Kids. Team Green is introducing a Water Walk in 2019 to highlight the impacts of plastic waste on local waterways.

The City of Sault Ste. Marie has received two OPA Community Conservation Awards. In 2012, the City received a top three nomination for the applicable population category. In 2013, the City was designated the winner of the Award in the 50,000 to 150,000 population category for the Environmental Initiatives Map. The highly-detailed Map and is а interactive Cloud-based platform that highlights green projects throughout Sault Ste. Marie.

The City of Sault Ste. Marie is always seeking new opportunities to improve the operations of facilities, delivery of service, and build capacity for staff to excel in energy management. It is clear that the municipality is off to a great start, but still has a long journey down the energy road.

The following section describes future ways in which the City can take their journey. It is by no means all encompassing, given that a lot can change in a 5 year time frame, but rather it will act as a guiding light.

The Area Coordinator—Environmental Services reviewed the energy audit documents, asset management documents, and interviewed staff both individually and as a group to determine projects on the 5 year horizon. Recommendations are categorized below.

Organizational Integration

The Corporate Energy Team will review current processes, procedures and plans to find ways to integrate energy conservation and efficiency into the daily responsibilities of staff. The acceptance and support of the CDM by Council and Senior Management is the first step to begin the process. Energy is everyone's responsibility, and staff ownership over its management is critical to success.

Data Management

Energy audits will continue to be completed when deemed necessary. Future energy audits should focus on outstanding facilities that are responsible for the highest amount of energy consumption, including the GFL Memorial Gardens, Transit Services Office and Garage, Police Services, RESC, Centennial Library, and Ontario Works. Facilities that have already been audited should be reconsidered once all the major facilities have been completed. The City's Asset Management Plan will continue to guide the completion of major infrastructure and capital upgrades. An Asset Management Team is in place to review the document and prioritize outstanding items based on a variety of metrics.

The City's Information Technology Division is working on a dashboard to display interval meter data collected at several major City facilities to determine trends and identify saving opportunities.

Operations & Maintenance

City staff will continue to evaluate opportunities to find operational efficiencies related to energy, including any potential for load shifting to take advantage of offpeak electricity rates. Specific areas of interest include the identification and elimination of waste energy, better control of global heating and cooling systems, centralized printing, and server virtualization and consolidation.

The City of Sault Ste. Marie also reports on energy consumed at municipal wastewater facilities. A water-energy nexus exists for the treatment and pumping of sewage. If the City can reduce the amount of wastewater flowing through the system, then the amount of energy required to treat it would also be reduced. One way to reduce the flow is to limit the amount of inflow and infiltration entering the system. The City of Sault Ste. Marie has completed an Inflow and Infiltration Pilot Study to identify possible problem areas where mitigation efforts could be identified and implemented. The Pilot Study will utilize alternative methods to those used in the past inflow infiltration for and identification.

Supply Management

The City's Purchasing Division will continue to monitor the procurement programs available to the Municipality, including hedge programs and spot market prices. Commodity pricing will have an impact on the business case for energy retrofits and the type of retrofits that will be considered.

Infrastructure Improvements

Significant energy savings can be achieved through major and minor infrastructure improvements. The Corporate Energy Team identified the projects for following future implementation: indoor / outdoor zone lighting, occupancy lighting, radiant heaters, sensors, boiler replacement, windows, insulation, and garage door replacement.

The Corporate Energy Team needs to have greater involvement in project prioritization and the purchasing process. Energy efficiency projects need to be identified during any future asset management reviews. A full list of completed and outstanding projects is available in Appendix C.

Renewable Energy

The City will continue to explore renewable energy opportunities, including rooftop solar and landfill gas-to-energy. Roof conditions, building codes, transmission capacity, and provincial programs will all play a role.

Staff Awareness

City Educating about staff conservation opportunities, in conjunction with efficiency projects, can result in additional energy savings. A corporate education and campaign will be awareness developed to inform as many staff as possible about energy conservation and energy savings opportunities, both at work and at home. Some of elements of the education the campaign could include: corporate webpage, newsletter and email blasts with energy conservation and efficiency updates and tips; lunch and learn series; posters for the bulletin boards; and the development of a corporate and/or community recognition program.

Financial Implications

Implementation of initiatives will be subject to future budget deliberations and approvals, especially with the current financial pressures and facing priorities the municipality. Energy budgets require special attention given that the Ontario Long Term Energy Plan predicts an average residential electricity price increase of approximately 3.5% per year over twenty years.7 Natural gas rates also vary, and must also be closely monitored. Departments will need to continue to work together to improve the way in which utility bills are managed.

Education and awareness about eligible funding programs will be provided to facility managers to build a better business case for energy projects. Current energy efficiency funding programs available include the IESO's saveONenergy program and Union Gas' enerSmart program. Regular communication with utility representatives will be made in an effort understand to program requirements opportunities. and Incentive money that is received by the Corporation is currently placed against the cost of the initiative to improve the business case.

Conclusion

The City of Sault Ste. Marie has been a energy leader with a proven track record of success. The reputation that the municipality has built over the last 12 years in the alternative energy and conservation sectors will keep the momentum going in future years.

The CDM has been developed to meet the legislative reporting requirements of *Regulation* 507/18, but will also need to be a flexible living document that guides staff to succeed. Energy management is a corner stone to effective and efficient municipal operations and service delivery. Rising energy costs will continue to place pressure on local governments to explore new innovations and technologies to keep consumption at a minimum. The short-term actions taken as a result of this plan will have long-term impacts on the municipal budget, workplace, environment, and economy.

7 Government of Ontario. 2013. Achieving Balance: Ontario's Long-Term Energy Plan. P.21.

Français

ONTARIO REGULATION 507/18

made under the

ELECTRICITY ACT, 1998

Made: December 12, 2018 Filed: December 14, 2018 Published on e-Laws: December 14, 2018 Printed in *The Ontario Gazette*: December 29, 2018

BROADER PUBLIC SECTOR: ENERGY REPORTING AND CONSERVATION AND DEMAND MANAGEMENT PLANS

Definitions

1. In this Regulation,

"municipal service board" means,

- (a) a municipal service board or joint municipal service board established or continued under the Municipal Act, 2001,
- (b) a city board or joint city board established or continued under the City of Toronto Act, 2006, or
- (c) a joint board established in accordance with a transfer order made under the *Municipal Water and Sewage Transfer Act, 1997*; ("commission de services municipaux")
- "post-secondary educational institution" means a university in Ontario, a college of applied arts and technology in Ontario or another post-secondary educational institution in Ontario, if the university, college or institution receives an annual operating grant; ("établissement d'enseignement postsecondaire")

"public hospital" means,

- (a) a hospital within the meaning of the Public Hospitals Act, or
- (b) the University of Ottawa Heart Institute/Institut de cardiologie de l'Université d'Ottawa; ("hôpital public")

"school board" means a board within the meaning of the Education Act. ("conseil scolaire")

Application

2. Sections 4, 5 and 6 apply only to public agencies prescribed by section 3.

Public agencies

3. The following are prescribed as public agencies for the purposes of sections 25.35.2 and 25.35.3 of the Act:

- 1. Every municipality.
- 2. Every municipal service board.
- 3. Every post-secondary educational institution.
- 4. Every public hospital.
- 5. Every school board.

Energy conservation and demand management plans

4. (1) A public agency shall prepare, publish, make available to the public and implement energy conservation and demand management plans or joint plans in accordance with section 25.35.2 of the Act and with this Regulation.

- (2) An energy conservation and demand management plan is composed of two parts as follows:
- 1. A summary of the public agency's annual energy consumption and greenhouse gas emissions for its operations.
- 2. A description of previous, current and proposed measures for conserving and otherwise reducing the amount of energy consumed by the public agency's operations and for managing the public agency's demand for energy, including a forecast of the expected results of current and proposed measures.

Summary of annual energy consumption and greenhouse gas emissions

5. (1) Subject to subsections (2) and (4), a summary of the public agency's annual energy consumption and greenhouse gas emissions must include a list of the energy consumption and greenhouse gas emissions for the year with respect to each of the public agency's operations that are set out in Table 1 of this Regulation for the type of public agency to which the public agency belongs and that are conducted in buildings or facilities the public agency owns or leases that,

- (a) are heated or cooled and in respect of which the public agency is issued the invoices and is responsible for making the payments for the building or facility's energy consumption; or
- (b) are related to the treatment of water or sewage, whether or not the building or facility is heated or cooled, and in respect of which the public agency is issued the invoices and is responsible for making the payments for the building or facility's energy consumption.

(2) If only part of a building or facility where an operation is conducted is heated or cooled, the public agency's summary referred to in subsection (1) must only include energy consumption and greenhouse gas emissions for the part of the building or facility where the operation is conducted that is heated or cooled.

(3) The public agency's summary referred to in subsection (1) must be prepared using the form entitled "Energy Consumption and Greenhouse Gas Emissions Reporting" that is available from the Ministry and must include the following information and calculations for each of the public agency's operations:

- 1. The address at which the operation is conducted.
- 2. The type of operation.
- 3. The total floor area of the indoor space in which the operation is conducted and, in cases where subsection (4) applies, the total indoor floor area of the building or facility in which the operation is conducted.
- 4. A description of the days and hours in the year during which the operation is conducted and, if the operation is conducted on a seasonal basis, the period or periods during the year when it is conducted.
- 5. The types of energy purchased for the year and consumed in connection with the operation.
- 6. The total amount of each type of energy purchased for the year and consumed in connection with the operation.
- 7. The total amount of greenhouse gas emissions for the year with respect to each type of energy purchased and consumed in connection with the operation.
- 8. The greenhouse gas emissions and energy consumption for the year from conducting the operation, calculating,
 - i. the annual mega watt hours per mega litre of water treated and distributed, if the operation is a water works,
 - ii. the annual mega watt hours per mega litre of sewage treated and distributed, if the operation is a sewage works, or
 - iii. per unit of floor space of the building or facility in which the operation is conducted, in any other case.

(4) If a public agency conducts, in the same building or facility, more than one operation set out in Table 1 for the type of public agency to which the public agency belongs, it shall allocate the total amount of energy purchased and consumed for the year to the operation that occupies the most indoor floor area in the building or facility, and if more than one operation occupies the same amount of indoor floor area, may allocate the total amount of energy to any one of them.

(5) In preparing its annual Energy Consumption and Greenhouse Gas Emissions Reporting form, a public agency may exclude its energy consumption and greenhouse gas emissions relating to its temporary use of an emergency or back-up generator in order to continue operations.

(6) On or before July 1 in each year, every public agency shall submit to the Minister, publish on its website and intranet site, if it has either or both, and make available to the public in printed form at its head office the public agency's Energy Consumption and Greenhouse Gas Emissions Reporting form for operations conducted in the year following the year to which the last annual form related.

(7) The following information, if applicable, must also be submitted, published and made available to the public with every Energy Consumption and Greenhouse Gas Emissions Reporting form:

- 1. If the operation is a school operated by a school board,
 - i. the number of classrooms in temporary accommodations at the school during the year, and
 - ii. whether there is an indoor swimming pool in the school.
- 2. If the public agency is a public hospital, whether a facility operated by the public hospital is a chronic or acute care facility, or both.

Energy conservation and demand management measures

6. (1) Every public agency shall publish on its website and intranet site, if it has either or both, and make available to the public in printed form at its head office,

(a) the information referred to in subsection 25.35.2 (3) of the Act with respect to each of the public agency's operations set out in Table 1 of this Regulation for the type of public agency to which the public agency belongs;

- (b) the information referred to in paragraph 2 of subsection 4 (2) of this Regulation with respect to each of the public agency's operations set out in Table 1 of this Regulation for the type of public agency to which the public agency belongs; and
- (c) the following information:
 - (i) information on the public agency's annual energy consumption during the last year for which complete information is available for a full year,
 - (ii) the public agency's goals and objectives for conserving and otherwise reducing energy consumption and managing its demand for energy,
 - (iii) the public agency's proposed measures under its energy conservation and demand management plan,
 - (iv) cost and saving estimates for its proposed measures,
 - (v) a description of any renewable energy generation facility operated by the public agency and the amount of energy produced on an annual basis by the facility,
 - (vi) a description of,
 - (A) the ground source energy harnessed, if any, by ground source heat pump technology operated by the public agency,
 - (B) the solar energy harnessed, if any, by thermal air technology or thermal water technology operated by the public agency, and
 - (C) the proposed plan, if any, to operate heat pump technology, thermal air technology or thermal water technology in the future,
 - (vii) the estimated length of time the public agency's energy conservation and demand management measures will be in place, and
 - (viii) confirmation that the energy conservation and demand management plan has been approved by the public agency's senior management.

(2) In addition to publishing and making available the required information with respect to the operations mentioned in clauses (1) (a) and (b), a public agency may also publish information with respect to any other operation that it conducts.

(3) On or before July 1, 2019 and on or before every fifth anniversary thereafter, every public agency shall publish on its website and intranet site, if it has either or both, and make available to the public in printed form at its head office all of the information that is required to be published and made available under subsection (1), the Energy Consumption and Greenhouse Gas Emissions Reporting form that is required to be submitted and published on or before July 1 of that year and the following information:

- 1. A description of current and proposed measures for conserving and otherwise reducing energy consumption and managing its demand for energy.
- 2. A revised forecast of the expected results of the current and proposed measures.
- 3. A report of the actual results achieved.
- 4. A description of any proposed changes to be made to assist the public agency in reaching any targets it has established or forecasts it has made.

Commencement

7. This Regulation comes into force on the later of the day section 2 of the *Green Energy Repeal Act, 2018* comes into force and the day this Regulation is filed.

TABLE 1

Column 1	Column 2	Column 3
Item	Type of public agency	Operation

1.	Municipality	 Administrative offices and related facilities, including municipal council chambers. Public libraries. Cultural facilities, indoor recreational facilities and community centres, including art galleries, performing arts facilities, auditoriums, indoor sports arenas, indoor ice rinks, indoor swimming pools, gyms and indoor courts for playing tennis, basketball or other sports. Ambulance stations and associated offices and facilities. Fire stations and associated offices and facilities. Folice stations and associated offices and facilities. Storage facilities where equipment or vehicles are maintained, repaired or stored. Buildings or facilities related to the treatment of water or sewage. Parking garages.
2. 3.	Municipal service board Post-secondary educational institution	 Buildings or facilities related to the treatment of water or sewage. Administrative offices and related facilities. Classrooms and related facilities. Laboratories. Student residences that have more than three storeys or a building area of more than 600 square metres. Student recreational facilities and athletic facilities. Libraries. Parking garages.
4.	School board	 Schools. Administrative offices and related facilities. Parking garages.
5.	Public hospital	 Facilities used for hospital purposes. Administrative offices and related facilities.

Français

Back to top

Appendix B

Energy Consumption and Greenhouse Gas Emissions Reporting - for 2017							
Confirm consecutive 12-mth							
period (mth-yr to mth-yr)	Jan/2017 - Dec/2017						
C	B. Constational State						
Sector	Municipality						
Sector Agency Sub-sector	Municipal						

Operation Name	Operation Type	Address	City Po	ostal Code	Total Floor Area Unit	Avg hrs/wk	Annual Flow (ML)	Electricity Quantity	Electricity Unit	Natural Gas Quantity	Natural Gas Unit
Stephenson Building	Administrative offices and related facilities, including municipal council chambers	2160 Yonge Street	Toronto N	17A 2G5	135,034.00 Square feet	70	23516.00224	2,181,065.00000	kWh	125,300.00000	Cubic meter
Bondar Pump Station	Facilities related to the pumping of sewage	65 Foster Drive	Sault Ste. P	5A 5N1	0.00 Square feet	168	1.72800	27,031.48213	kWh		
Bonney Pump Station	Facilities related to the pumping of sewage	765 Bonney Street	Sault Ste. P	6C 4X5	0.00 Square feet	168	52.80500	21,856.48489	kWh		
Centennial Branch Library	Public libraries	50 East Street	Sault Ste. P	5A 3C3	33,525.00 Square feet	61.5	0.00000	447,650.90909	kWh	52,681.55825	Cubic Meter
Churchill Branch Library	Public libraries	301 Lake Street	Sault Ste. P	5A 4B5	4,574.00 Square feet	36.5	0.00000	1,717.92000	kWh	940.38639	Cubic Meter
Civic Centre	Administrative offices and related facilities, including municipal council chambers	99 Foster Drive	Sault Ste. P	5A 5X6	95,331.00 Square feet	40	0.00000	2,371,805.63097	kWh		
Clark Creek Pump Station	Facilities related to the pumping of sewage	1677 Queen Street	E Sault Ste. P	5A 2G8	139.98 Square feet	168	8888.35500	752,727.27273	kWh		
East End Wastewater Treatme	nt Facilities related to the treatment of sewage	2221 Queen Street	E Sault Ste. P	5A 7B5	43,094.00 Square feet	168	11807.11500	5,145,101.97677	kWh	365,417.30529	Cubic Meter
Ermatinger Clergue Historic Sit	e Cultural facilities	831 Queen Street E	a Sault Ste. P	5A 2A8	5,928.00 Square feet	49	0.00000	61,890.75434	kWh	9,095.75888	Cubic Meter
GFL Memorial Gardens	Indoor ice rinks	269 Queen Street E	a Sault Ste. P	5A 1Y9	134,075.00 Square feet	85.75	0.00000	2,399,406.39613	kWh	203,406.81220	Cubic Meter
Fort Creek Pump Station	Facilities related to the pumping of sewage	39 Fort Creek Drive	Sault Ste. P	5C 5T7	0.00 Square feet	168	21.55200	8,836.68029	kWh		
Frontenac Pump Station	Facilities related to the pumping of sewage	665 Frontenac Stree	etSault Ste. P	OS 1C0	0.00 Square feet	168	9.53800	2,240.85176	kWh		
Glasgow Pump Station	Facilities related to the pumping of sewage	891 Bonney Street			0.00 Square feet	168	1.77600	6,969.13460			
Gore Pump Station	Facilities related to the pumping of sewage	50 Gore Street	Sault Ste. P		0.00 Square feet	168	6.46100	6,753.17542	kWh		
Heritage Discovery Centre	Cultural facilities	800 Bay Street	Sault Ste. P		6,500.00 Square feet	57	0.00000	99,697.49771		12,192.61539	Cubic Meter
Huron Pump Station	Facilities related to the pumping of sewage	99 Huron Street	Sault Ste. P		0.00 Square feet	168	2.02100	5,020.18837		,	
Industrial Park Pump Station	Facilities related to the pumping of sewage	96 Industrial B Cour			0.00 Square feet	168	2.29300	7.411.53193			
Jesse Irving Daycare	Community centres	84 Ruth Street	Sault Ste. P		6,735.00 Square feet	50	0.00000	61,732.23364		15,845.95476	Cubic Meter
John Rhodes Community Cent		260 Elizabeth Stree			125,957.00 Square feet	136.5	0.00000	3,444,329.09645		534.273.58668	
John Street Pump Station	Facilities related to the pumping of sewage	291 John Street	Sault Ste. P		0.00 Square feet	168	1250.00000	180.798.93048		55 1,275156666	cubic meter
Landfill Administration	Administrative offices and related facilities, including municipal council chambers		Sault Ste. P		1,962.00 Square feet	48.5	0.00000	34,085.39086		3,337.69177	Cubic Meter
Landfill Garage	Parking garages	402 Fifth Line East			7,840.00 Square feet	49	0.00000	110.254.32779		21.509.21078	
Landfill Pump Station	Facilities related to the pumping of sewage	402 Fifth Line East			0.00 Square feet	168	47.24200	152,834.48894		21,505.21070	cubic meter
Lower Lake Pump Station	Facilities related to the pumping of sewage	Lake Street	Sault Ste. P		0.00 Square feet	168	8.49300	2.319.90968			
Mary Pump Station	Facilities related to the pumping of sewage	31 Mary Street	Sault Ste. P		0.00 Square feet	168	16.24600	5,487.56979			
Maycourt Daycare	Community centres	13 Salisbury Street	Sault Ste. P		3,711.00 Square feet	50	0.00000	12,734.87134		7.159.19747	Cubic Meter
McGregor Pump Station	Facilities related to the pumping of sewage	,	Sault Ste. P		0.00 Square feet	168	14.08900	2,882.03355		7,155.15747	cubic Wieter
McMeeken	Indoor ice rinks	616 Goulais Avenue			29,722.00 Square feet	40	0.00000	364,659.74026		33.608.66939	Cubic Meter
Millwood Pump Station	Facilities related to the pumping of sewage	19 Millwood Street			0.00 Square feet	168	6.03700	11,073.82560		33,000.00333	cubic Wieter
Muriel Pump Station	Facilities related to the pumping of sewage	3 Muriel Drive	Sault Ste. P		0.00 Square feet	168	54.54400	19,953.04619			
Northern Community Centre 8		556 Goulais Avenue			63,291.00 Square feet	35	0.00000	553,951.16883		45,748.80521	Cubic Motor
Number 1 Fire Hall	Fire stations and associated offices and facilities		Sault Ste. P		18,120.00 Square feet	168	0.00000	146,997.20559		44,059.27152	
Number 2 Fire Hall	Fire stations and associated offices and facilities	363 Second Line We		-	4,311.00 Square feet	168	0.00000	53,894.04545		5,237.90125	
Number 3 Fire Hall	Fire stations and associated offices and facilities	100 Bennett Boulev			4,311.00 Square feet	168	0.00000	50,673.02888		5,789.96436	
Ontario Works	Administrative offices and related facilities, including municipal council chambers	540 Albert Street Ea			23,678.00 Square feet	40	0.00000	506,927.27273		74.777.08363	
Pim Street Pump Station	Facilities related to the pumping of sewage	816 Bay Street	Sault Ste. P		142.12 Square feet	168	5045.06000	485,018.18182		74,777.06505	Cubic Meter
Pine Pump Station	Facilities related to the pumping of sewage	48 Pine Street	Sault Ste. P		0.00 Square feet	168	9.53900	13,693.65538			
	Police stations and associated offices and facilities	580 Second Line Ea			46,913.00 Square feet	69	0.00000	1,145,105.45455		31,119.68828	Cubic Motor
		128 Sackville Road			140,848.00 Square feet	122.5	0.00000	889.672.00645		182.726.81994	
	ul Storage facilities where equipment or vehicles are maintained, repaired or stored				,			,		- ,	
RESC Office & Garage	Ambulance stations and associated offices and facilities	65 Old Garden Rive 61 River Road			39,320.00 Square feet	168 168	0.00000	567,779.67914		111,396.81615	
River Road Pump Station	Facilities related to the pumping of sewage		Sault Ste. P		81.60 Square feet		2918.80000	191,246.72727		14,541.96685	
Sault Ste. Marie Museum	Cultural facilities	690 Queen Street E			17,672.00 Square feet	41.25	0.00000	244,167.27273		18,847.69878	
Senior Drop-In Centre	Community centres	619 Bay Street	Sault Ste. P		14,470.00 Square feet	35	0.00000	176,027.37968		10,032.68010	
Steelton Senior Centre	Community centres	235 Wellington Stre			8,431.00 Square feet	40	0.00000	96,143.19771		12,034.16547	Cubic Meter
Tallack Pump Station	Facilities related to the pumping of sewage	99 Tallack Boulevar			0.00 Square feet	168	4.44100	3,254.23750			
	e Storage facilities where equipment or vehicles are maintained, repaired or stored	111 Huron Street	Sault Ste. P		46,120.00 Square feet	143.5	0.00000	333,916.36364		68,089.33489	Cubic Meter
Upper Lake Pump Station	Facilities related to the pumping of sewage	1120 Lake Street	Sault Ste. P		0.00 Square feet	168	10.10900	18,941.78918			
Varsity Pump Station	Facilities related to the pumping of sewage	56 Varsity Avenue	Sault Ste. P		0.00 Square feet	168	7.60900	6,631.37097			
West End Treatment Plant Pur	ng Facilities related to the pumping of sewage	55 Allen Side Road	Sault Ste. P	5C 5P4	3,095.00 Square feet	168	6378.34300	700,001.29870	kWh		

Appendix C - Completed Projects

Building	line #	ID	Location / Type	Description & History	Actual or Estimated Year of Acquisition	Recommendation	Assumption and Calculations
01 Main Library	27	0303001 Chilled Water Systems	Boiler room	Two Trane reciprocating chillers generate chilled water for building cooling. Based on the age of the chillers, they may be using a banned refrigerant (R 11). The unit is long past its expected service life, and is likely difficult to service.	1967	to consider redesigning the cooling systems, as	We assume the existing units operate at approximately 1.25W/ton, to be replaced by one or two units operating at 0.8 KW/ton. If combined with the cooling tower below, replacing the chiller and cooling tower with new equipment can yield annual electricity savings of up to 30% for building cooling during summer.
01 Main Library	28	0303001 Chilled Water Systems	Roof	One Marley cooling tower rejects heat from the chillers to the atmosphere. The unit is past its expected service life.	1987	Replace the cooling tower as soon as practicable. If the cooling tower fails in service the entire library will be without air conditioning.	We assume the unit has on/off control only, and no VFO, and that a new unit would include a VFO. A correctly programmed VFD can reduce energy consumption by 10%.
03 Seniors Drop-in	20	D304008 Air Handling Units	Middle & Upper Roofs	There are three Lennox forced air furnaces with cooling units, two model GCS9-513-150C-2Y, rated at 150,000 Btu/hr input, and approximately 12.5 tons cooling capacity, and one model GCS9- 413-120C-2Y, rated at 120,000 Btu/hr input, and approximately 9 tons cooling capacity. All units show heavy cabinet corrosion consistent with age. The maintenance contractor reports interior components are rusted and the parts are obsolete.	1984	Replace at end of lifespan. These units are beyond their expected service life and could fail at any time, causing service interruptions and possible higher costs for emergency replacement.	We assume the system operates cooling at approximately 1.25kW/ton, and heating at 80% efficiency. A new unit could operate at 0.9 KW/ton cooling and 85% efficiency heating. This could result in up to 28% savings on electricity used for cooling with this unit, and a 5% savings in natural gas used for heating.
08 PW Admin	16	B82020 Exterior Windows	Original - Second Floor	At the second floor. there are continuous strip windows around the entire perimeter. Half of the windows appear original, with anodized aluminum frames and operable windows . The glass has a dark tint.	1970	Budget for eventual replacement of windows at end of service life.	We have assumed an existing U-value of 0.55 based on insulated aluminum windows and a new U value of 0.48 for double panel low e and thermally broken windows. Saving is 1.5-3.0% of heating energy consumption.
08 PW Admin	17	B82020 Exterior Windows	Ground Floor North Offices, Entrance Lobby	Ground floor north offices and the entrance lobby have original aluminum windows with insulated glass units. Some of the original operable awning windows have been removed to install window air conditioners.	1970	Replace original windows for improved thermal performance.	We have assumed an existing U-value of 0.55 based on aluminum windows and a new U value of 0.48 for double panel low-e and thermally broken windows. Saving is 1.5- 3% of heating energy consumption.
09 PW Garage A	19	D302002 Hot Water Boilers	Main Boiler Room, northwest corner	Space heating for the building and for the adjacent administration building is provided by 2 large capacity boilers located in a room on the mezzanine, at the northwest corner of the building. The boilers are manufactured by Napanee Boiler Works, and are original to construction. The boilers each have a rated capacity of 3,244 MBtu/h. We understand both boilers continue to operate.	1970	The boilers have long exceeded their expected service life. Continued operation may be subject to more frequent and longer breakdowns. We recommend replacement in the next year.	We assume the existing system heats with 65% efficiency and new boilers would be 88% efficient. This would result in a saving of approximately 26% of gas consumption for this unit.
09 PW Garage A	22	D202003 Domestic Water Equipment	Main Boiler Room, northwest corner	Domestic hot water for the change rooms and washrooms near the northwest mezzanine is provided by an 85 gallon gas-fired storage tank manufactured by Ruud. The tank appears to be older. Water is also stored in an adjacent tank . An additional tank located nearby is abandoned and no longer used.		Replace gas fired storage tank, and adjacent storage tank to maintain reliability. Postponing replacement may result in unpredictable failures and possible water damage.	New and old equipment operate with the same technology and same efficiencies. There are little to no energy savings in replacing this equipment.
13 Fire #2	28	D502002 Lighting Equipment	Exterior	Exterior lighting includes high-power sodium discharge wall packs, sconces at doors, and one pole-mounted light at the parking lot.	1989	Replace at end of lifespan. Timing is discretionary.	Electricity usage for exterior lighting can be reduced by approximately 44% based on the following wattage reductions (existing to new LED): 100 to 22; 150 to 70.

15 Fire #4	19	D304008 Air Handling Units	Lower roof, HRV #1	There is a Venmar CES heat recovery ventilator, with a Neptronic L controller attached. Age unknown, but drawings indicated this unit was originally intended to be replaced, so we assume it is now past its expected lifespan.	Jnknown	Replace unit at end of lifespan (estimated)	New and old equipment operate with the same technology and same efficiencies. There are little to no energy savings in replacing this equipment.
15 Fire #4	23	D302002 Hot Water Boilers	Boiler Room	There are eight Weil-Mclain gas-fired boilers in two banks, each loop with expansion tank and 7.5hp circulation pumps, and a shared bypass feeder. The boilers, pumps and humidifiers are controlled by a Carrier BAS. This hydronic heating system serves the garage. Site staff advised three of the eight boilers are not working and the system still provides adequate service. Age estimated; equipment largely predates the 2007 renovation.	988	Replace the boilers at the end of their service life. New boilers may be as much as 10% more efficient than the existing boilers, reducing the annual cost to heat the garage by a similar amount.	We assume the existing system heats with 75% efficiency and new boilers would be 88% efficient. This would result in a saving of approximately 15% of gas consumption for this unit.
15 Fire #4	25	D304008 Air Handling Units	Upper roof	There is a Temprite air handling unit with indirect gas-fired heater 1 Model GTDM55-CBW , rated at 687,500 Btu/hr max input.	995	Replace unit at end of lifespan. This unit supplies fresh air to the building, and is required for ventilation.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
15 Fire #4	64	B3010 Roof Coverings - Exposed Modified Bitumen	Rooftop	The roof is a two-ply modified bitumen membrane. The membrane 1 is ridged and shows surface degranulation. There are many soft spots indicating leakage and wet insulation. There is some staining visible at the interior, mostly at the top of walls, and brick deterioration at the exterior. Based on minimal staining at the interior, the original vapour barrier appears to be intact and functioning as a backup membrane. Age estimated.	986	Replace the roof membrane, including an allowance for localized deck repairs (see item B102003 above). If replacement is deferred, leakage will likely continue or accelerate, causing increased damage to the roof deck and more costly repairs.	We have assumed an existing U-value of 0.389 based on two-ply modified bitumen membrane with concrete deck. Proposed U-value of 0.194 with additional 2" of insulation. Saving is 0.75- 1.0% of heating energy consumption.
16 Transit Depot	23	D304008 Air Handling Units	Body Shop	There is a make-up air unit on roof level supplying heat to the body 1 shop area below. The unit is manufactured by Reznor, Model RPV- PAK2, Serial 3AGL104-0C8, and appears to be original	981	Replace make-up air unit to maintain reliability and improve energy efficiency .	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
16 Transit Depot	24	D304008 Air Handling Units	Storage Garage	The drawings indicate there are 2 make-up air units in the ceiling 1 of the storage garage. We were unable to verify the presence of these units, however we have assumed they are in place and original. Drawings indicate they have a heating capacity of 320 MBH.	981	If units are original, they are al the end of their service life. We recommend replacement for improved energy efficiency and to maintain reliability.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
17 Transit Terminal	35	- · · · - · · · · · · · · · · · · · · ·	Pole- Mounted Fixtures	There are a few poles around the site with 3 streetlight-type high pressure sodium fixtures per pole.	983	Addit ional cost to replace with LED fixtures to reduce energy costs.	Electricity usage for site lighting can be reduced by approximately 72% based on the following wattage reductions (existing to new LED): 250 to 70
18 Police HQ	21	D304008 Air Handling Units	Roof	HVAC unit #1 is a 10 ton Carrier Weathermaker rooftop unit that 1 serves the second floor of the old wing.	967	The unit should be replaced immediately to ensure reliable service. If the rooftop unit fails then the area it serves will become uncomfortable.	We assume the system operates at approximately 1.2kW/ton, and a new system could operate at 0.8 KW/ton. This could result in up to 33% savings on electricity used for cooling with this unit.
18 Police HQ	23	D304008 Air Handling Units	Roof	HVAC unit #3 is a 10 ton Carrier Weathermaker rooftop unit that 1 serves the first floor of the old wing.	967	The unit should be replaced immediately to ensure reliable service. If the rooftop unit fails then the area it serves will become uncomfortable.	We assume the system operates at approximately 1.2kW/ton, and a new system could operate at 0.8 KW/ton. This could result in up to 33% savings on electricity used for cooling with this unit.
18 Police HQ	24	D304008 Air Handling Units	Roof	HVAC unit #4 is a 15 ton Carrier Weathermaker rooftop unit that 1 serves the east side of the new wing.	967	The unit should be replaced immediately to ensure reliable service. If the rooftop unit fails then the area it serves will become uncomfortable.	We assume the system operates at approximately 1.2kW/ton, and a new system could operate at 0.8 KW/ton. This could result in up to 33% savings on electricity used for cooling with this unit.

18 Police HQ	25	D304008 Air Handling Units	Roof	HVAC unit #6 is a 20 ton Carrier Weathermaker rooftop unit that serves the west side of the new wing.	1967	The unit should be replaced immediately to ensure reliable service. If the rooftop unit fails then the area it serves will become uncomfortable.	We assume the system operates at approximately 1.2kW/ton,and a new system could operate at 0.8 KW/ton. This could result in up to 33% savings on electricity used for cooling with this unit.
18 Police HQ	30	D305006 Package Units	Interior perimeter	Incremental units with electric heating and direct expansion cooling are located around the interior perimeter of the building. The cooling sections from the units have been removed and the exterior wall penetration has been repaired, leaving only the electric heating sections.	1967	Replace the incremental units to ensure reliable service. The incremental units have been replaced with wall mounted electric convection heaters, which appear to be performing adequately. If an incremental unit fails then the area it serves will become uncomfortable.	There are no savings to direct replacement.
18 Police HQ	37	D202003 Domestic Water Equipment	Basement utility room	Domestic hot water is generated in one AO Smith gas fired water heater rated at 670 MBH.	1990	service life. If the water heater fails the building	New and old equipment operate with the same technology and same efficiencies. There are little to no energy savings in replacing this equipment.
24 SSM Museum	16		Basement mechanical room	Hot water for heating is generated in two gas fired boilers manufactured by Rheem. The boilers are each rated at 576 MBH maximum gas input.	1977	the boilers fail.	We assume the existing system heats with 75% efficiency and new boilers would be 85% efficient. This would result in a saving of approximately 10% of gas consumption for this unit.
27 PW Storage G	11	B3010 Roof Coverings - Built Up Asphalt	Main Roof	The main building roof was viewed from the adjacent shop roof, as there is no other access. The roof appears to be a built-up asphalt roof membrane. Staff reported ongoing problems with water penetration. We understand there are plans to replace the roof in the coming year.	1985	will likely continue or accelerate,causing increased repair costs, staining and/or mold at	We have assumed an existing U-value of 0.135 based on built-up asphalt roof membrane covered with pea gravel. Proposed U-value of 0.270 with additional 2" of insulation. Saving is 0.75-1.0% of heating energy consumption.
27 PW Storage G	30	5 5	Wall- Mounted Fixtures	There are a total of 18 metal halide wall pack fixtures above overhead doors on each of the east and west elevations.	2005		Electricity usage for site lighting can be reduced by approximately 72% based on the following wattage reductions (existing to new LED):250 to 70.

Building	line #	ID	Location / Type	Description & History	Actual or Estimated Year of Acquisition	Recommendation	Assumption and Calculations
01 Main Library	9	B2010 Exterior Walls - Metal Siding		The top of the building is clad with horizontal metal siding including soffits. The finish of this siding has weathered, some panels have warped and many perimeter base pieces were missing.	1965	Replacement at end of service life is recommended. Remaining life extended due to condition, and repairs timed to coincide with window replacement.	We have assumed an existing wall U-value of 0.405 based siding with foam insulation. New U- value of 0.203 with additional 2" of insulation. Saving is 0.75-1.0% of heating energy consumption.
01 Main Library	10	B2020 Exterior Windows		The windows are prefinished aluminum with fixed sealed double- glazed panes. The date stamps of the sealed glazing units were varied including many stamped as 1965, 1979 and 1993. The frame finishes are faded, but there were no complaints about drafts or water penetration except from window (Invoicing room) near the loading room. Spray foam was noted at the window exterior mullion indicating a patch repair in attempts to stop the water penetration. Many glazing panes had failed with severe fogging noted within the glazing panes of the back study room floor to ceiling windows.	1965	Windows have reached the end of their service life.	We have assumed an existing U-value of 0.55 based on aluminum windows and a new U-value of 0.48 for double panel low e and thermally broken windows. Saving is 1.5- 3.0% of heating energy consumption.
01 Main Library	29	0304008 Air Handling Units	Boiler room	AC #1 uses chilled water to cool offices and rooms in the basement.	1967	Replace AC#1 at the end of its service life. If AC#1 fails in service the areas of the building it serves will be without air conditioning.	We assume the unit has on/off control only, and no VFD, and that a new unit would include a VFO. A correctly programmed VFO can reduce energy consumption by 10%.
01 Main Library	30	0304008 Air Handling Units	Boiler room	The main library air handling unit conditions the air for all public areas of the building.	1967	Maintain the unit by replacing fans and heating and cooling coils as required. If the air handling unit fails in service the majority of the library will be without air conditioning.	We assume the unit has on/off control only, and no VFD, and that a new unit would include a VFO. A correctly programmed VFO can reduce energy consumption by 10%.
01 Main Library	31	0304008 Air Handling Units	Penthouse mechanical room	The return air fans for the main library air handling unit are two inline axial fans.	1967	Replace the fans at the end of their service life. If the return air fans fail in service the heating and air conditioning system that serves the library will operate at greatly reduced capacity.	We assume the unit has on/off control only, and no VFO, and that a new unit would include a VFO. A correctly programmed VFO can reduce energy consumption by 10%.
01 Main Library	34	D304008 Air Handling Units	Penthouse mechanical room	A Trane air handling unit supplies conditioned air to the lobby area. The unit is long past its expected service life.	1967	Replace the air handling unit at the end of its service life. If the air handling unit fails then heating and cooling to a large part of the library will be lost.	We assume the unit has on/off control only, and no VFD, and that a new unit would include a VFD. A correctly programmed VFD can reduce energy consumption by 10%.
01 Main Library	32	D305004 Fin Tube Radiation	Throughout	The perimeter of the building interior is heated with hydronic radiators.	1967	Replace the radiators at the end of their service life. If radiators fail in service then some heat to the area of the building served will be lost.	There is little to no savings for replacing the radiators, but we assume the radiators have basic thermostat controls only. The use of programmable thermostats to control the radiators can reduce heating bills by approximately 1% for every degree of temperature setback. The heating water temperature could also be set back at night, if not already done. Savings by setting back the water temperature would be approximately equal to using programmable thermostats.
01 Main Library	33	D303002 Direct Expansion Systems	Main floor mechanical room	A Carrier air conditioning unit cools part of the main floor. The unit rejects heat to a water cooled condenser. The unit is long past its expected service life.	1967	Replace the air conditioning unit at the end of its service life. If the unit fails then cooling to that part of the building will be lost.	We assume the system operates at approximately 1.25kW/ton, and a new system with new rooftop cooling unit could operate at 0.9 KW/ton. This could result in up to 28% savings on electricity used for cooling with this unit.

01 Main Library	50 / 51	D502002 Lighting Equipment	Throughout	Lighting on the lower floor consists mainly of older fixtures using 1 TS lamps.	980	Replace the fixtures at the end of their service life. Install motion detectors on the lighting systems on the lower floor.	Using LED T8s with occupancy sensors and assuming a schedule of 10 hours per week day and 6 hours on Saturday, a 52% savings on lighting electricity consumption is possible.
02 Steelton	27	D304008 Air Handling Units	New Wing Roof	There are four York electric packaged heating and cooling units 1 serving the new wing: two model number D2PF030A060A and two model number D2PF036A25A, showing signs of age.	983	Replace at end of lifespan. The units are beyond their expected service life and could fai at any time. Other units can supplement heating over the short term, but this will affect air quality, occupant comfort and reduce overal building heating and cooling capability. As all units will be replaced at the same time, we have included an engineering allowance to evaluate alternatives.	We assume the existing units operate at approximately 1.25kW/ton cooling, and new equipment could operate at 0.9 KW/ton cooling. This could result in up to 28% savings on electricity used for cooling with these units. Converting from electric to natural gas heating could reduce heating costs by approximately 60%.
02 Steelton	32	D304008 Air Handling Units	Library	The maintenance contractor reported there are two air handling units in the ceiling of the 2nd floor of the library, served by heating equipment in the lobby furnace room and cooling equipment at the lobby roof. They could not provide further data. Site staff were unaware of these concealed units.	Jnknown	Replace at end of lifespan. We have used a placeholder for cost and timing.	There was no data available to analyze these units.
02 Steelton	35	D3050 Terminal & Package Units	Hot Water Radiators	There are perimeter radiators at the new wing and one radiator at 1 the library basement. Assumed to be original.	968	Replace the radiators at the end of their life span. The work may be deferred until failures begin.	There is little to no savings for replacing the radiators, but we assume the radiators have basic thermostat controls only. The use of programmable thermostats to control the radiators can reduce heating bills by approximately 1% for every degree of temperature setback. The heating water temperature could also be set back at night, if not already done. Savings by setting back the water temperature would be approximately equal to using programmable thermostats.
03 Seniors Drop-in	15	B3010 Roof Coverings BUR	Upper	Built-up asphalt and gravel roof with prefinished metal flashings, 1 and area drains. Some UV deterioration at upturns to mechanical units. No leakage reported.	984	Complete localized repairs at a cost below report threshold. Replace roofing at end of lifespan. Service life extended due to good condition.	We have assumed an existing U-value of 0.514 based on built-up asphalt and gravel roof with concrete deck. New U value of 0.25 with additional 2" of insulation. Saving is 0.5-1.0% of heating energy consumption.
03 Seniors Drop-in	24	D202003 Domestic Water Equipment	Old Wing	Domestic hot water is generated and stored in a Rheem Ruud 1 electric heating & storage tank with 85 US gallon capacity.	993	Replace at end of lifespan at a cost below the threshold.	Converting to natural gas could save approximately 60% off the cost to heat domestic water.
03 Seniors Drop-in	25	D202003 Domestic Water Equipment	Addition	Domestic hot water is generated and stored in a John Wood 1 electric heating & storage tank with 60 US gallon capacity.	986	Replace at end of lifespan at a cost below the threshold.	Converting to natural gas could save approximately 60% off the cost to heat domestic water.
04 Jesse Irving	18	D305006 Package Units		natural gas heating and electric cooling. The data plates are illegible. However, drawings call for a Carrier Model 48DP020-5 gas heat and 18 tons cooling. Heated and cooled air is circulated through central ducting in the ceiling. Gas piping to the unit shows surface corrosion and requires repainting during the work.	988	Replace unit at end of lifespan. The unit is beyond its expected service life and could fail at any time, causing service interruptions and possible higher costs for emergency replacement.	We assume the system operates cooling at approximately 1.25kW/ton, and heating at 80% efficiency. A new unit could operate at 0.9 KW/ton cooling and 85% efficiency heating. This could result in up to 28% savings on electricity used for cooling with this unit, and a 5% savings in natural gas used for heating.
05 Maycourt	8	B201008 Exterior Soffits		The cantilevered concrete bay window seats are reported to be very cold. The base of the wall and the soffit are exposed concrete slabs with minimal insulation at the interior per drawings, located inboard of the heating ductwork.	971	Insulate exposed concrete walls and soffits from the exterior including framing, siding and trim to improve occupant comfort and reduce energy loss from the heating system.	From an envelope perspective, insulating this small area would result in approximately 1% savings on heating energy. Energy savings from insulating the ductwork should be greater, but it is difficult to estimate without air flow information.

05 Maycourt	19	D3050 Terminal &		These are two Carrier Weathermaker I rooftop units. The data	1989		We assume the system operates cooling at
		Package Units		plates are largely illegible. However, we estimate the cooling capacity of each at approximately 5 tons. The units are serviceable but the heating is reported to be uneven. Heated and cooled air is circulated through central ducting to in-floor-slab ducting to perimeter vent grilles.		beyond their expected service life and could fail at any time, causing service interruptions and possible higher costs for emergency replacement.	approximately 1.25 kW/ton, and heating at 80% efficiency. A new unit could operate at 0.9 KW/ton cooling and 85% efficiency heating. This could result in up to 28% savings on electricity used for cooling with this unit, and a 5% savings in natural gas used for heating.
06 Bondar Park	8	D302003 Furnaces	Furnace Room	There is a gas-fired high-efficiency Carrier Weathermaker furnace identified on drawings as model 58SXC 120 condensing furnace rated at 132MBtu/hr input and 2,110 cfm. Drawings do not identify cooling as part of the system or building equipment. but we observed a rooftop condensing unit.		Replace at end of lifespan, extended due to low usage.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 5% reduction in gas consumption for this unit.
06 Bondar Park	53	D305005 Electric Heating		Drawings identify 11electric heaters, most flush-mounted inserted in the ceilings, part from the wall-mounted blower at the electrical room.	1990	Replace at end of lifespan.	Converting to natural gas could save approximately 60% off the cost to heat domestic water.
06 Bondar Park	56	D502002 Lighting Equipment	Exterior	There are 15 exterior soffit light fixtures.	1990	Replace at end of lifespan with new LED type fixtures.	Electricity usage for exterior lighting can be reduced by approximately 71% based on the following wattage reductions (existing to new LED): 50 to 7; 100 to 35;400 to 120.
07 Civic Centre	32	D305003 Fan Coil Units	Throughout	The interior perimeter is heated and cooled with approximately 530 floor mounted fan coil units. We understand approximately 50% have already been replaced as-needed.		Replace the fan coil units at the end of their service life. This work can be phased over several years. The areas served by individual fan coil units will become uncomfortable if a unit fails.	There is little to no savings for replacing the fan coils, but we assume the units have basic thermostat controls only. The use of programmable thermostats to control the radiators can reduce heating bills by approximately 1% for every degree of temperature setback.
08 PW Admin	28	D304008 Air Handling Units	Rooftop	There are two packaged Carrier rooftop units that supply forced air heating and cooling for the second level only. The units appear to each have a 4 ton cooling capacity and a 92,000Btu heating capacity.	1994	Replace rooftop units at end of service life to maintain reliability.	We assume the system operates cooling at approximately 1.25kW/ton, and heating at 80% efficiency. A new unit could operate at 0.9 KW/ton cooling and 85% efficiency heating. This could result in up to 28% savings on electricity used for cooling with this unit, and a 5% savings in natural gas used for heating.
09 PW Garage A	8	B2010 Exterior Walls - Metal Siding	North and West Sides	The exterior walls of the building are clad entirely with corrugated metal cladding with exposed mineral fibre insulation with vinyl vapour barrier at the interior, except the lowest 10 feet where there is a galvanized steel liner panel. At numerous locations on the east and south elevations, there is corrosion and mechanical damage throughout. At some locations, missing cladding has been replaced with plywood.	1970	The appearance and condition of the metal cladding is such that we recommend complete replacement with insulated metal panels, consisting of two skins of metal with foam insulation in between. The consequence of not doing this would be continuously higher space heating costs, uncomfortable drafts, and ongoing water penetration.	We have assumed an existing wall U-value of 0.405 based two layers of metal panel with foam insulation in between. New U-value of 0.203 with additional 2" of insulation. Saving is 0.75-1.0% of heating energy consumption.
12 Fire #1	25	D3030 Cooling Generating Systems	Low roof	A Carrier 50TJ-005501QE rooftop unit heats and cools the dornitory with direct expansion cooling and electric heating. Cooling capacity appears to be approximately 5 tons.	1997	Replace at end of lifespan.	Converting to natural gas could save approximately 60% off the cost to heat domestic water .

12 Fire #1	28	D305004 Fin Tube Radiation	Office & Staff Areas	Perimeter fin tube radiators are controlled by thermostat.	1985	Replace at end of lifespan. Units can be replaced as-needed as they fail.	There is little to no savings for replacing the radiators, but we assume the radiators have basic thermostat controls only. The use of programmable thermostats to control the radiators can reduce heating bills by approximately 1% for every degree of temperature also be set back at night, if not already done. Savings by setting back the water temperature would be approximately equal to using programmable thermostats, setback.
12 Fire #1	31	D202003 Domestic Water Equipment		Domestic hot water is generated and stored in two 310L Rheem Ruud storage-type gas-fired water heaters. Site staff recalled the units being replaced 8-10 years ago, but we have shown year of acquisition based on data plate information.	1997	Replace at end of lifespan.	New and old equipment operate with the same technology and same efficiencies. There are little to no energy savings in replacing this equipment.
12 Fire #1	41	D502002 Lighting Equipment	Site & Exterior	There are five single- and double-head bollards at the parking lot and wall-packs above the bay doors. Staff reported lights are problematic.	1985	Investigate the system for faults. Unless the investigation shows localized repairs will be sufficient, plan to replace to coincide with pavement replacement. This work requires excavation within the parking lot, and should be completed with pavement replacement to reduce costs. If not completed at this time, the system could fail completely within the next few years, causing safety hazards and costing substantially more to replace.	Electricity usage for lighting can be reduced by approximately 44% based on the following wattage reductions (existing to new LED): 75 to 31; 150 to 70.
13 Fire #2	16	D302004 Fuel-fired Unit Heaters	Garage	The garage is heated by two Duomatic Olsen gas- fired heaters rated at 160 MBH maximum input.	1989	Replace both heaters at end of lifespan.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
14 Fire #3	16	D302004 Fuel-fired Unit Heaters	Garage	The garage is heated by two Duomatic Olsen gas- fired heaters rated at 160 MBH maximum input.	1989	Replace both heaters at end of lifespan.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
14 Fire #3	28	D502002 Lighting Equipment	Exterior	Exterior lighting includes high-power sodium discharge wall packs, sconces at doors, and one pole-mounted light at the parking lot.	1989	Replace at end of lifespan. Timing is discretionary.	Electricity usage for exterior lighting can be reduced by approximately 60% based on the following wattage reductions (existing to new LED): 100 to 22; 150 to 70.
15 Fire #4	29	D202003 Domestic Water Equipment	Boiler Room	Domestic hot water is generated and stored in two 100 gallon A.O. Smith storage-type gas-fired water heaters. The system includes a potable water expansion tank and a circulating pump.		Replace at end of lifespan.	New and old equipment operate with the same technology and same efficiencies. There are little to no energy savings in replacing this equipment.
15 Fire #4	67	D3050 Terminal & Package Units		There is one Temprite make-up air unit with indirect gas-fired heater, Model GTDM25-CAW , rated at 243,750 max Btu/hr. The exposed rooftop gas lines show surface corrosion. Age estimated.	1995	Repaint gas piping as part of roof replacement above. Replace unit at end of lifespan. This unit supplies fresh air to the building, and is required for ventilation.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
16 Transit Depot	13	B203004 Overhead and Roll-up Doors	Storage Garage, Wash Bay, Mechanic's Shop, Body Shop	There are a 4 large overhead doors at the rear of the storage garage that allow busses to exit the garage. A separate single door allows busses to enter the garage. There are also 3 other doors allowing access to the wash bay, body shop and mechanic's shop. We understand the doors are original and have been repaired numerous times after being struck by vehicles.	1981	Replace overhead doors to maintain reliability and a weather-tight enclosure. Consideration should be given to high-speed overhead doors at the storage garage.	We have assumed a 1000 CFM unit heater per door with the existing doors open for 3 hours per day and the high speed roll up doors open for 2 hours per day. Estimated savings are about 1% of heating energy consumption.

16 Transit Depot	18	B3010 Roof Coverings - Coal Tar Pitch	Wash Bay, Shops, Storage Roofs	Roofs at the wash bay, storage garage and over the shop areas are built-up with coal tar pitch and pea gravel. The roofs appear to be original to construction. We understand there have been several areas of recent leaks that have been locally repaired. We noted several areas of ridging, blisters in the roof membrane, as well as "blueberries" suggesting an aged roof.	1981	Replace original roof membranes to maintain a reliable, weather-proof enclosure. We have phased replacements, and assumed ongoing local repairs would be completed in the interim.	We have assumed an existing U-value of 0.270 based on two-ply modified bitumen membrane with steel deck. Proposed U-value of 0.135 with additional 2" of insulation. Saving is 0.75-1.0% of heating energy consumption.
16 Transit Depot	27	D304001 Air Distribution, Heating and Cooling	Offices	Rooftop units over the offices space supply air to ductwork buried below the slab-on-grade to diffusers throughout the floor. Occupants reported spacers are frequently too cold in winter, and several reported using space heaters to maintain comfort.	1981	Consideration should be given to routing supply air ductwork through the drop ceiling space. We have provided a preliminary budget for these modifications.	We assume the existing system heats with 70% efficiency and a new system would be 85% efficient. This would result in a 18% reduction in gas consumption for this unit.
16 Transit Depot	40- 45, 58	D502002 Lighting Equipment		Lighting at offices consist mostly of recessed 2- bulb T12 fluorescent fixtures that appear to be original. Lighting at the storage garage and maintenance shop is a combination of low pressure sodium, metal halide and fluorescent fixtures. Most fixtures appear to be original, however some fluorescent fixtures have been converted to TS Fixtures. Site lighting consists of a number of high pressure sodium wall packs, as well as some pole-mounted luminaires. Some pole-mounted fixtures appear to have been converted to LED. There are a few poles around the site with 3 streetlight-type high pressure sodium fixtures per pole.	1981	Replace existing lighting with LED	Electricity usage for office lighting can be reduced by approximately 70% overall based on the following wattage reductions (existing to new LED): 40 to 17;64 to 30; 150 to 70; 192 to 60; 250 to 70; 300 to 120;500 to 150.
16 Transit Depot	46		Body Shop and Wash Bay	The body shop and wash bay have an electrical heating system, consisting of a mesh of heating cables buried in the floor slab. We understand both systems are functional. We were not aware of the total heating capacity, however given the size both rooms, they are likely 15kW to 20 kW each.	1981	Replace the in-floor heating system as it fails. Consideration could be given to a gas-fired glycol heating system which may reduce energy costs.	We have assumed a new system of would include a boiler and buried glycol piping if gas is available. Converting to natural gas could save approximately 60% off the cost to heat domestic water .
17 Transit Terminal	12	B3010 Roof Coverings - Exposed Single- Ply	Main Roof	The building has a flat roof covered with a single- ply, loose-laid EPDM roof membrane. At numerous locations, the seams have debonded and there are penetrations through the membrane. Tenting and wrinkling is apparent at the perimeter, indicating shrinkage of the membrane. At one of the roof drains, the drain cage is missing and there is organic growth within the drain.	1983	The roof membrane is well beyond its normal expected service life. There is a high risk of leakage at any time. The construction of the roof is such that leaks will be difficult to isolate and repair. We recommend immediate replacement with a two ply modified bitumen roof membrane.	We have assumed an existing U-value of 0.338 based on two-ply modified bitumen membrane. Proposed U- value of 0.165 with additional 2" of insulation. Saving is 0.75-1.0% of heating energy consumption.072
17 Transit Terminal	15	D304008 Air Handling Units	Main Roof	Space heating is provided by a gas-fired,forced air rooftop heating unit. There is no provision for cooling. Return air is located in the main space only, and we understand the driver's lounge is stuffy. Original drawings indicate a heating capacity of 150 000 Btu/h. The unit appears to be original, and we understand is still functioning as intended.	1983	The rooftop furnace unit is operating well beyond its normal expected service life. There is a high risk of failure at any time. We recommend replacement within the next year to maintain reliability. Consideration should be given to installing a cooling coil. Budget provided is for a package rooftop heating unit with separate condenser/ cooling coil.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.

18 Police HQ	10	82020 Exlerior Windows	Original building	The windows are prefinished aluminum with casement operating and fixed sealed double- glazed panes. Glass block glazed units were noted at the west and north elevation of the walkout basement and ground floor levels. There are many complaints about drafts or water penetration through the window frames. The casement operating portion of the windows are sealed closed. Water penetration was noted at various window perimeters. Most of the damages was at the stained adjacent ceiling tiles and sill interior finishes. Two glazing panels were shattered at the south west corner of the building near the roof access stairwell.	1967	Windows have reached the end of their service life.	We have assumed an existing U-value of 0.55 based on aluminium windows and a new Uvalue of 0.48 for double panel low e and thermally broken windows. Saving is 1.0- 1.5% of healing energy consumption.
19 Ontario Works	15	B3010 Roof Coverings - BUR	Main Roof	The main building roof is finished with a built-up asphalt roof membrane covered with pea gravel. There were numerous locations of local repairs. Maintenance staff reported the last repairs were completed in 2010. We have estimated the roof age based on its appearance.	1985	Replace roof within the next 3 years to maintain reliability.	We have assumed an existing U-value of 0.135 based on built-up asphalt roof membrane covered with pea gravel. Proposed U-value of 0.270 with additional 2" of insulation. Saving is 0.75- 1.0% of heating energy consumption.
19 Ontario Works	20	D304008 Air Handling Units	Rooftop Mechanical Room	There is a Trane Air Handling unit in the rooftop mechanical room, Model 25MPVBVU that we understand provides tempered air for the 3rd floor only. This unit appears to have a hydronic heating coil and separate direct expansion cooling condenser on the roof. The unit appears to be original and is powered by a 15 horsepower supply air fan.	1964	Replace or refurbish air handler as it is operating beyond its normal service life. Replace supply air fan with improved controls and variable frequency drive to match supply air to suit building needs, and reduce energy costs.	There was no data available to analyse these units.
19 Ontario Works	36	D3030 Cooling Generating Systems	Rooftop	There is an outdoor condensing unit manufactured by Trane, Model RAUA-2506-MD that provides cooling to the lab on the 3rd floor. Based on the serial number, the unit appears to date to 1980.	1980	The condenser is operating well beyond its normal service life.We recommend replacement for improved efficiency and reliability. If replacement is deferred, equipment may fail when most needed.	We assume the system operates at approximately 1.2kW/ton, and a new system could operate at 0.8 KW/ton. This could result in up to 33% savings on electricity used for cooling with this unit.
19 Ontario Works	41	0302002 Hot Water Boilers	Basement Mechanical Room	Domestic hot water is provided by a 380 MBH, natural gas atmospheric boiler, model CWX380C- N, manufactured by Rheem and located in the basement mechanical room.	1992	Replace boiler at end of service life.	New and old equipment operate with the same technology and same efficiencies. There are little to no energy savings in replacing this equipment.
21 John Rhodes	39	D304008 Air Handling Units	Roof, Pad 2	AC-8 is a Carrier rooftop unit that provides 26 tons of direct expansion cooling and has a maximum heating gas input of 360 MBH. AC-8 serves the Gym.	1998	Replace AC-8 at the end of its service life.	We assume the system operates cooling at approximately 1 kW/ton, and heating at 80% efficiency. A new unit could operate at 0.8 KW/ton cooling and 85% efficiency heating. This could result in up to 20% savings on electricity used for cooling with this unit, and a 6% savings in natural gas used for heating.
21 John Rhodes	58	F104005 Ice Rinks	Compressor room	Chilled glycol for ice making is generated in three Frick ammonia chillers. Two chillers are equipped with 100 hp compressors and one is equipped with a 60 hp compressor. The equipment is controlled by a Cimco control panel.	1999	Replace the chillers at the end of their service life. Ice making capability will be lost if the chillers fail.	We assume the existing units operate at approximately 1kW/ton, and new units could operate at 0.8 KW/ton cooling. This would allow a 20% reduction in electricity use for ice making equiment.

24 SSM Museum	12	B3010 Roof Coverings - BUR		The low slope roof has two levels and is a built-up asphalt roof membrane with prefinished metal perimeter upturn and copper flashings.The roof areas are drained with area drains. The top roof level has wood catwalks. Leakage reported and stains noted near the top roof level access ladder. Another leak was noted within unit 303. A roof drain was observed above that area. We were informed that an extensive roof leak occurred after our site review during a heavy rain storm. The roof over the stairwell structure is a single ply membrane; a missing drain cover was noted. The roof over the elevator enclosure is single ply membrane with stone ballast. The roof over the clock tower is sloped copper roofing. The roof over the top roof level is sloped metal panel roofing;this metal roof was rusted. Various poorly-completed previous patch repairs were noted at the lower roof level flashing.	77	the end of their lifespan Localized copper metal roofing and flashing repairs are also required at the same time. If repairs are deferred,	We have assumed an existing U-value of 0.135 based on built-up asphalt roof membrane covered with pea gravel. Proposed U-value of 0.270 with additional 2" of insulation. Saving is 0.75-1.0% of heating energy consumption.
27 PW Storage G	15	D302004 Fuel-fired Unit Heaters	Main Garage Area	Space heating for the garage is provided by 12 gas-fired 198 suspended unit heaters manufactured by Olsen. The heaters have a nominal capacity of 200000 Btu/hr @ 80% efficiency. One of the units is no longer operational. All units appear to be original.	85	Replace suspended unit heaters to maintain reliability.	We assume the existing system heats with 80% efficiency and a new system would be 85% efficient. This would result in a 6% reduction in gas consumption for this unit.
27 PW Storage G	25	D502002 Lighting Equipment	Garage	Lighting inside the garage consists of 4-bulb, T-8 high output fixtures. We have assumed bulbs were recently updated.	11	Replace bulbs with LED bulbs to reduce energy costs.	Electricity usage for garage lighting can be reduced by approximately 22% based on the following wattage reductions (existing to new LED): 160 (4x40) to 125

R(5)

CANTEEN - BELLEVUE PARK, SAULT STE MARIE, ON

ct	Savings Summary Table	Date	18-Decembe	er-12	Ву		IBS		Page	1 of 1	
Values g	unity Savings liven in the following table represent the savings for implem ted. Interrelation refers to combining opportunities that may							ings for some	measures, if in	nplemented tog	gether, are
		ESTIMAT	FED ANNUAL C	ONSUMPTION	SAVINGS	ESTI	MATED A SAVI	NNUAL COST	TOTAL	ESTIMATED	SIMPLE
	OPPORTUNITY DESCRIPTION	ESTIMAT Fuel <i>kWh</i>	FED ANNUAL C Electric <i>kWh</i>	ONSUMPTION Demand <i>kW</i>	SAVINGS GHG tCO ₂					ESTIMATED COST	SIMPLE PAYBACK Years
R(1) Lighting F	OPPORTUNITY DESCRIPTION	Fuel	Electric	Demand	GHG		SAVI	NGS Electric \$	TOTAL ESTIMATED	-	PAYBACK
		Fuel	Electric kWh	Demand	GHG tCO ₂		SAVI	NGS Electric \$ \$ 70	TOTAL ESTIMATED SAVINGS	COST	PAYBACK Years
R(2) Lighting F	Retrofit - T12 to T8 ¹	Fuel	Electric <i>kWh</i> 685	Demand	GHG tCO ₂ 0.2		SAVI	NGS Electric \$ \$ 70	TOTALESTIMATEDSAVINGS\$70\$20	COST \$ 1,050	PAYBACK Years 15.0

The following table represents the estimated combined annual savings from implementing the noted opportunities. Interrelation between individual opportunities has been taken into consideration

0.1

-0.1

-\$

-\$

920 \$

\$

90

2,330 \$

210

\$

1,410 \$

120 \$

4,500

800

3.2

6.7

23,302

2,096

	ESTIMATED ANNUAL CONSUMPTION SAVINGS				ESTIMATED A SAVI	NNUAL COST NGS	TOTAL	ESTIMATED	SIMPLE
OPPORTUNITY DESCRIPTION	Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO ₂	Fuel \$	Electric \$	ESTIMATED SAVINGS	COST	PAYBACK Years
Recommended - All	-33,455	33,703	0	1.3	-\$ 1,100	\$ 3,400	\$ 2,300	\$ 12,925	5.6
% of Utility Saved	N/A	35%	N/A	13%					

% of Utility Saved N/A 35%

-27,414

-2,795

Benchmark & Screening Report

Convert Canteen Heating to Natural Gas

R(6) Convert Canteen Fryer to Natural Gas

when determining these values.

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Current Facility Characteristics	0.0	14.0	14.0	9.7
Facility Characteristics with Recommended Energy Project	10.6	3.3	13.9	8.4

1. No labour cost has been carried for this opportunity as it may be performed by either facility staff or by the City Electrical Department.

1	Subject	Date	Ву	Page
	Savings Summary Table	15-April-13	IBS Inc.	1 of 1
		1		

Opportunity Savings

Values given in the following table represent the savings for implementing each individual opportunity against current operating conditions. Savings for some measures, if implemented together, are interrelated. Interrelation refers to combining opportunities that may have a positive or negative financial impact on each respective opportunity.

OPPORTUNITY DESCRIPTION	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	EST	IMATED A		L COST	TOTAL ESTIMATED	ESTIMATED		SIMPLE PAYBACK
OFFORTONT PESCAPTION	Fuel	Electric	Demand	GHG		Fuel	Elec	ctric	SAVINGS	co	ST	_
	kWh	kWh	kW	tCO ₂		\$		Þ				Years
R(1) Lighting Retrofit - T12 to T8 ¹		269		0.1	\$	-	\$	25	\$ 25	\$	130	5.2
R(2) Lighting Retrofit - Incandescent to CFL ¹		638		0.1	\$	-	\$	60	\$ 60	\$	65	1.1
R(3) Lighting Retrofit - Exterior HPS and MH Lighting to LED ¹		1,809		0.4	\$	-	\$	180	\$ 365	\$	2,090	5.7
R(4) Convert Domestic Hot Water Heating to Natural Gas	-6,956	5,913		0.0	-\$	230	\$	590	\$ 360	\$	1,400	3.9
R(5) Overnight Temperature Setback in Greenhouse Potting Room	17,605	0		3.2	\$	600	\$	-	\$ 600	\$	2,500	4.2
R(6) Insulate Greenhouse Knee Wall	33,610	0		6.1	\$	1,100	\$	-	\$ 1,100	\$	4,000	3.6
AD(1) Lighting Retrofit - Propigating Greenhouse MH to Induction Grow Lighting	0	1,095		0.2	\$	-	\$	110	\$ 110	\$	1,600	14.5
AD(2) Greenhouse Night Curtain	42,000	0		7.7	\$	1,400	\$	-	\$ 1,400	\$ 1	7,800	12.7
AG(1) Solar Thermal Space Heating	117,559	-600		21.4	\$	4,000	-\$	60	\$ 3,940	\$ 17	3,600	44.1
AG(2) Geothermal Heat Pump	307,000	-74000		39.9	\$	10,400	-\$	7,400	\$ 3,000	\$ 21	3,000	71.0
AG(3) Greenhouse Glass Replacement	4,900	0		0.9	\$	170	\$	-	\$ 170	\$ 1	2,000	70.6

The following table represents the estimated combined annual savings from implementing the noted opportunities. Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMA	ESTIMATED ANNUAL CONSUMPTION SAVINGS				NNUAL COST	TOTAL	ESTIMATED	SIMPLE PAYBACK
OPPORTUNITY DESCRIPTION	Fuel <i>kWh</i>	Electric kWh	Demand <i>kW</i>	GHG tCO ₂	Fuel \$	Electric \$	ESTIMATED SAVINGS	COST	Years
Recommended - R(1), R(2), R(3), R(4), R(5), R(6), & AD(1)	44,258	9,724	0	10.2	\$ 1,500	\$ 1,000	\$ 2,685	\$ 11,785	4.4
% of Utility Sa	red 13%	18%	N/A	14%					

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Current Facility Characteristics (Greenhouse & Canteen)	32.7	5.1	37.8	74.5
Facility Characteristics with Recommended Energy Project	28	4.1	32.6	64.2

CUSTO

1. No labour cost has been carried for this opportunity as it may be performed by either facility staff or by the City Electrical Department.

SAULT STE. MARIE

Subject Savings Summary Table	Date 28-August-08	^{By} RB	Page 1 of 1

	Description		ENER	GY SAVING	S (kWh)			S	AVINGS IN	IDOLLARS			TOTAL Savings	Est Cost	SIMPLE PAYBACK
		Reclaim	kWh Clg	kWh	kWh Ele	kW	k٧	Vh Htg	kWh Clg	Other	Ele	ctric			Years
		Htg (kWh)		Htg											
1	Tighten Air Handling Unit Belts				16,977		\$	-	\$-		\$ ´	1,222	\$ 1,222	\$ 2,100	1.7
2	Disconnect All Unused T12 Ballasts			-17,920	49,669		-\$	1,290	\$-		\$ 3	3,576	\$ 2,286	\$ 5,500	2.4
3	Zone Lighting			-28,731	80,000		-\$	2,069	\$-		\$ 5	5,760	\$ 3,691	\$ 4,800	1.3
4	Lighting Automation			-59,541	165,000		-\$	4,287	\$-		\$ 1 [·]	1,880	\$ 7,593	\$ 14,400	1.9
5	Building Automation System		13,332		211,083		\$	-	\$ 960		\$ 15	5,198	\$ 16,158	\$ 137,500	8.5
6	Demand Load Rolling of Heating System					259	\$	-	\$-		\$ ´	1,588	\$ 1,588	\$ 12,500	7.9
7	Demand Controled Ventilation		6,968		174,287		\$	-	\$ 502		\$ 12	2,549	\$ 13,050	\$ 54,000	4.1
8	Temperature Setbacks		16,745	65,251			\$	4,698	\$ 1,206		\$	-	\$ 5,904	\$ 8,400	1.4
9	Vending Machine Control				1,700		\$	-	\$-		\$	122	\$ 122	\$ 900	7.4
10	Lighting Retrofit: Incandescent to CFL				19,232		\$	-	\$-		\$ ´	1,385	\$ 1,385	\$ 1,250	0.9
11	Lighting Retrofit: T12 Fluorescent Fixtures to T8		4,275	-81,619	226,655		-\$	5,877	\$ 308		\$ 16	5,319	\$ 10,750	\$ 102,750	9.6
12	Radiant Heaters for Receiving Bay			-12,479	9,359	50	-\$	534	\$-		\$	977	\$ 443	\$ 9,800	22.1
13	Water-Source Heat Pump for Heating			624,000	-15,768		\$	44,928	\$-		-\$ ´	1,135	\$ 43,793	\$ 168,500	3.8
14	Ice Storage for Building Cooling		19,232				\$	-	\$ 1,385		\$	-	\$ 1,385	\$ 76,000	54.9
15	Solar Domestic Hot Water System			12,235			\$	881	\$-		\$	-	\$ 881	\$ 22,000	25.0
	TOTALS			501,196	938,194			\$36,450			\$6	9,441	\$110,251	\$620,400	5.6
	Projected based on Benchmark & Screen Report				N/A										
	Total Utility (Composite Year): Percentage of Utility Saved:			0	3,049,855 47%	(SEE NOT	ES)								
	Benchmark Analysis:	ekWh/ft ²		Existing 30.7	New 16.2		В	M Avg							

Notes:

1. Noted savings and cost estimates are for reference only and are not guaranteed

2. Some savings are interrelated. Each savings value presented in this table represents the savings for each individual opportunity. Interelation refers to combining opportunities, which may have a positive or negative financial impact on each respective opportunity. This impact must be evaluated separately prior to implementation to ensure accurate financial projections.

FIRE STATION NO. 1, SAULT STE. MARIE, ON

Subje	oject	Date	Ву	Page
	Savings Summary Table	22-July-11	IBS Inc.	1 of 1

Opportunity Savings

Values given in the following table represent the savings for implementing each individual opportunity against current operating conditions. Savings for some measures, if implemented together, are interrelated. Interrelation refers to combining opportunities that may have a positive or negative financial impact on each respective opportunity.

	OPPORTUNITY DESCRIPTION	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	EST		ANNUAL COST		TOTAL	ESTIMATED		SIMPLE PAYBACK
		Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO ₂		Fuel \$	Electric \$		SAVINGS	COST		Years
R(1)	Garage: Electric Slab and Infrared Heating to NG Radiant Heaters ¹	-270,000	228,000	290	1	-\$	7,400	\$ 19,2	00 3	\$ 11,800	\$	50,000	4.2
R(2)	Adjust Boiler Room Space Temperature Set Point	3,400			1	\$	100	\$	- 3	\$ 100		N/A	0.0
R(3)	Replace Administration RTU and Living Quarters MUA Unit	38,000			7	\$	1,000	\$	- 3	\$ 1,000	\$	28,000	28.0
R(4)	Boiler Loop OAT Reset	11,300			2	\$	300	\$	- 3	\$ 300	\$	1,000	3.3
R(5)	Retrofit Fluorescent T12 Fixture Ballasts and Lamps to T8	-5,400	7,000	150	1	-\$	100	\$ 1,9	00 3	\$ 1,800	\$	5,100	2.8
R(6)	Vending Miser		900		0	\$	-	\$ 1	00 3	\$ 100	\$	200	2.0
R(7)	Improve Existing Boiler OAT Lockout Control		600		0	\$	-	\$	10	\$ 40	\$	200	5.0
AD(1)	Install Interval Meter and Load Shift Electric Slab Heating ¹			300	0	\$	-	\$ 4,2	00 3	\$ 4,200	\$	1,000	0.2
AG(1)	Replace Pneumatic Controls with Centralized DDC Control System	13,900	3,200		3	\$	400	\$ 2	00 3	\$ 600	\$	45,000	75.0
									╉				

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all listed opportunities except R(3), AD(1), AG(1). Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMAT	TIMATED ANNUAL CONSUMPTION SAVINGS ESTIMATED ANNUAL COST SAVINGS						ESTIMATED	SIMPLE PAYBACK	
OPPORTUNITY DESCRIPTION	Fuel <i>kWh</i>	Electric kWh	Demand <i>kW</i>	GHG tCO ₂	Fuel \$	Electric \$	ESTIMATED SAVINGS	COST		
Recommended - All except R(3) AD(1) AG(1)	-269,600	243,200	440	4	-\$ 7,400	\$ 21,700	\$ 14,300	56,500	4.0	
% of Utility Saved	-146%	66%	48%	4%					-	

% of Utility Saved -146%

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Current Facility Characteristics	8	17	25	115.0
Facility Characteristics with Recommended Energy Project	21	6	26	110.9

Notes:

1. The implementation of either opportunity R(1) or AD(1) affects savings related to the other. Due to the degree of interrelation between the two opportunities, AD(1) has not been included in the recommended project. If full implementation of R(1) will take more than three months from the start of the heating season (due to budgeting, tendering, or permits), opportunity AD(1) should be implemented as it will pay for itself and then produce a positive cash flow within three months of implementation. Upon implementation of R(1), AD(1) will no longer havings savings associated with it.

FIRE STATION NO. 2, SAULT STE. MARIE, ON

S	Subject	Date	Ву	Page
	Savings Summary Table	20-October-11	IBS Inc.	1 of 1

Opportunity Savings

Values given in the following table represent the savings for implementing each individual opportunity against current operating conditions. Savings for some measures, if implemented together, are interrelated. Interrelation refers to combining opportunities that may have a positive or negative financial impact on each respective opportunity.

	OPPORTUNITY DESCRIPTION	ESTIMAT	ESTIMATED ANNUAL CONSUMPTION SAVINGS				IMATED A SAVI	NNUAL COST	TOTAL ESTIMATEI	ES	STIMATED	SIMPLE PAYBACK	
		Fuel	Electric	Demand	GHG		Fuel	Electric	SAVINGS		COST		
		kWh	kWh	kW	tCO ₂		\$	\$				Years	
R(1)	Incandescent to CFL	-2,300	3,000		0	-\$	60	\$ 330	\$ 270	D \$	200	0.7	
R(2)	Retrofit Fluorescent T12 Fixture Ballasts and Lamps to T8	-5,700	7,400		1	-\$	200	\$ 800	\$ 600	C \$	4,200	7.0	
R(3)	Vending Miser		500		0	\$	-	\$ 50	\$ 50	C \$	200	4.0	
AD(1)	Natural Gas Boiler for DHW and Supplementing Heat Pump	-13,500	12,800		0	-\$	400	\$ 1,400	\$ 1,000	C \$	12,000	12.0	
AD(2)	High-Efficiency Condensing Natural Gas Unit Heaters	8,094			1	\$	200	\$ -	\$ 200	C \$	10,000	50.0	

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing opportunities R(1), R(2), R(3). Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	ESTIMATED A SAVI	NGS	TOTAL	ESTIMATED	SIMPLE PAYBACK
OPPORTUNITY DESCRIPTION	Fuel kWh	Electric	Demand	GHG	Fuel	Electric	ESTIMATED SAVINGS	COST	PATBACK
		kWh	kW	tCO ₂	\$	\$	OATINGO		Years
Recommended - R(1), R(2), R(3)	-8,000	10,900	0	1	-\$ 200	\$ 1,200	\$ 1,000	\$ 4,600	4.6
% of Utility Saved	-14%	16%	0%	4%					

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Current Facility Characteristics	15	18	32	25.7
Facility Characteristics with Recommended Energy Project	17	15	32	24.8

Notes:

JOHN RHODES COMMUNITY CENTRE, SAULT STE. MARIE, ON

Subject Savings Summary Table Date 14-April-11 By IBS Inc. Page 1 of 1
--

Opportunity Savings

Values given in the following table represent the savings for implementing each individual opportunity against current operating conditions. Savings for some measures, if implemented together, are interrelated. Interrelation refers to combining opportunities that may have a positive or negative financial impact on each respective opportunity.

	OPPORTUNITY DESCRIPTION	ESTIMATE	ED ANNUAL C	ONSUMPTION	SAVINGS	E	ESTIMATE COST S	D ANNUAL AVINGS		TOTAL	-	IMATED	SIMPLE PAYBACK
		Fuel kWh	Electric kWh	Demand kW	GHG tCO ₂		Fuel	Electric		AVINGS	0	COST	Years
R(1)	Optimize Floodwater Temperature	50,000	KVVII		9	\$	ب 1,900	• \$-	\$	1,900	\$	250	0.1
					-	- ·	-	•	<u> </u>	-			-
R(2)	Low-Flow Push Button Shower Faucets	386,000			71	\$	14,800	\$-	\$	14,800	\$	37,500	2.5
R(3)	Dectron Unit For Aquatics Zone Dehumidification	1,396,000	-229,000	-300	216	\$	53,700	-\$ 20,200	\$	33,500	\$	140,000	4.2
R(4)	Low-e Ceiling for Each Arena		127,000		23	\$	-	\$ 10,200	\$	10,200	\$	75,000	7.4
R(5)	Floodwater Treatment System	61,000			11	\$	2,300	\$-	\$	2,300	\$	35,000	15.2
	Optimize Aquatics Zone Conditions		200,000		36	\$	-	\$ 16,000	_	16,000	\$	2,500	0.2
ND(2)	VFD for Throttled Pool Pumps		92,000		17	\$	-	\$ 7,400	\$	7,400	\$	35,000	4.7
ND(3)	Occupancy Sensor Control for Lighting in All Change Rooms		28,000	75	5	\$	-	\$ 2,700	\$	2,700	\$	20,000	7.4
AD(4)	Floating Refrigeration Condensing Pressure		67,000		12	\$	-	\$ 5,400	\$	5,400	\$	15,000	2.8
D(5)	Halogen Pot Lights to LED		40,000	60	7	\$	-	\$ 3,600	\$	3,600	\$	7,500	2.1
D(6)	Retrofit Arena MH Fixtures with High-Output T5 Fluorescent Fixtures		66,000	110	12	\$	-	\$ 6,100	\$	6,100	\$	85,000	13.9
AD(7)	Retrofit Aquatics MH Fixtures with High-Output T5 Fluorescent Fixtures		41,000	60	7	\$	-	\$ 3,700	\$	3,700	\$	38,000	10.3
AD(8)	Atmospheric to Condensing Boilers for Arena DHW and Floodwater	94,000			17	\$	3,600	\$-	\$	3,600	\$	30,000	8.3
AD(9)	Outdoor Wallpack HPS Light Fixtures to LED		13,000	24	2	\$	-	\$ 1,200	\$	1,200	\$	13,000	10.8
G(1)	Deleted From Scope of Work					1			1				
G(2)	Turbidity Meter for Pool Filtration		125,000		23	\$	-	\$ 10,000	\$	10,000	\$	50,000	5.0
AG(3)	Moved To POI					1							
G(4)	Full Plant Heat Recovery	1,117,000			206	\$	43,000	\$-	\$	43,000	\$	302,000	7.0
G(5)	Building A/C via Refrigeration Plant		93,000	İ	17	\$	-	\$ 7,400	\$	7,400	\$	175,000	23.6
	Moved To POI		-	l		1			Ĩ.				

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all listed opportunities except AD(2), AD(6), AD(7), AG(5). Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	ESTIMATE COST S	-	TOTAL	ESTIMATED	SIMPLE PAYBACK	
OPPORTUNITY DESCRIPTION	Fuel	Electric	Demand	GHG	Fuel	Electric	ESTIMATED SAVINGS	COST	PATBACK	
	kWh	kWh	kW	tCO ₂	\$	\$ \$ SAV			Years	
Recommended - All except AD(2), AD(6), AD(7), AG(5)	3,104,000	371,000	-216	638	\$ 119,400	\$ 28,300	\$ 147,700	\$ 727,750	4.9	
% of Utility Sa	red 54%	11%	-3%	38%						

Ver 5.0

Benchmark & Screening Report

	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Current Facility Characteristics	43	26	69	1,700.6
Facility Characteristics with Recommended Energy Project	20	23	43	1,062.3

Notes:

1. Noted savings and cost estimates are for screening only and are not guaranteed

2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.

 NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.

4. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks.

SAULT STE MARIE CITY WORKS FACILITY, SAULT STE MARIE ON FACILITY SUMMARY

Subje	Date	Ву	Page
Savings Summary Table	9-October-09	RB	1 of 1

Recommended Energy Project Summary

The following table represents the estimated combined annual savings from implementing each of the building's Recommended Energy Projects. Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMATED ANNUAL CONSUMPTION SAVINGS					ESTIMATED ANNUAL COST SAVINGS				TOTAL		IMATED	SIMPLE PAYBACK
OPPORTUNITY DESCRIPTION	Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO₂		Fuel \$	E	Electric \$	-	IMATED VINGS	(COST	Years
Recommended Energy Project: Administration Building	162,700	15,400	8	33	\$	7,604	\$	1,197	\$	8,802	\$	438,200	49.8
Recommended Energy Project: Main Building	613,300	137,600	136	138	\$	28,664	\$	11,103	\$	39,768	\$	460,300	11.6
Recommended Energy Project: Carpentry Shop	12,800	13,900	11	5	\$	598	\$	1,104	\$	1,703	\$	10,100	5.9
Recommended Energy Project: Test Lab	0	10,100	2	2	\$	-	\$	765	\$	765	\$	1,550	2.0
Recommended Energy Project: North Storage Garage	304,000	27,600	20	61	\$	14,208	\$	2,181	\$	16,390	\$	206,500	12.6
Total Saving	5 1,092,800	204,600	177	238	\$	51,075	\$	16,351	\$	67,427	\$1	,116,650	16.6
% of Utility Save	43%	19%	9%	5%		46%		18%					

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Existing Conditions	22	9	31	663.0
With Implementation of Recommended Energy Project	12	8	20	425.0

Notes:

2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.

3. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.

 NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks. PRHAS

SOLITI

^{1.} Noted savings and cost estimates are for reference only and are not guaranteed

SAULT STE MARIE CITY WORKS FACILITY, SAULT STE MARIE ON ADMINISTRATION BUILDING

Subje	Savings Summary Table	Date 9-October-09	^{By} RB	Page	1 of 1

OPPORTUNITY DESCRIPTION	ESTIMAT	ESTIMATED ANNUAL CONSUMPTION SAVINGS			ESTIMATED ANNUAL COST SAVINGS			TOTAL ESTIMATED	ESTIN		SIMPLE PAYBACK	INCLUDE IN ENERGY
	Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO₂		Fuel \$	Electric \$	SAVINGS		COST	Years	PROJECT? (YES / NO)
Routine												
Building Envelope: Replace / Install Exterior Door Seals	6,300			1	\$	5 294	\$-	\$ 294	\$	850	2.9	YES
Building Envelope: Window Replacement	92,500	4,500		18	\$	4,323	\$ 335	\$ 4,659	\$	78,000	16.7	YES
Controls: Efficient Vending Machine Controller	-1,300	1,900		0	-\$	61	\$ 142	\$ 81	\$	500	6.2	YES
Controls: Occupancy Sensor Control for Lighting in Record Room		400		0	\$	-	\$ 30	\$ 30	\$	100	3.4	YES
Lighting: T12 Fluorescent Fixtures to T8 with Electronic Ballasts	-1,900	2,400	8	0	-\$	89	\$ 229	\$ 140	\$	1,750	12.5	YES
Advanced												
Building Envelope: Insulation Upgrade	20,700			4	\$	967	\$-	\$ 967	\$	27,000	27.9	NO
Building Envelope: Administration/Garage Link Insulation	10,000			2	\$	6 467	\$-	\$ 467	\$	14,000	30.0	YES
HVAC: Retro-Commission HVAC Equipment	11,900	6,200		3	\$	556	\$ 462	\$ 1,018	\$	15,000	14.7	YES
Controls: Install Direct Digitial Control System	50,300	3,800		10	\$	2,351	\$ 283	\$ 2,634	\$	65,000	24.7	YES
Aggressive												
HVAC: New Central HVAC System				0	\$	-	\$-	\$-	\$	175,000	n/a	YES
HVAC: Solar Domestic Hot Water System	11,700			2	\$	547	\$-	\$ 547	\$	18,000	32.9	YES
2 HVAC: Solar Wall for Pre-heating Ventilation Air	12,000			2	\$	561	\$-	\$ 561	\$	22,000	39.2	NO
HVAC: Install Dedicated Condensing Boiler for Perimeter Heating	50,000			9	\$	2,337	\$-	\$ 2,337	\$	45,000	19.3	YES
4 Controls: Demand Control Ventilation	17,500	4,700		4	\$	818	\$ 350	\$ 1,168	\$	25,000	21.4	YES

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all included opportunities together in a single energy project. Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMATED ANNUAL CONSUMPTION SAVINGS					ESTIMATED ANNUAL COST SAVINGS					ESTIMATED	SIMPLE PAYBACK
OPPORTUNITY DESCRIPTION	Fuel	Electric	Demand	GHG	F	Fuel Electric		ESTIMATED SAVINGS		COST	FATBACK	
	kWh	kWh	kW	tCO ₂		\$	•••	\$	SAVINGS			Years
Recommended Energy Project	162,700	15,400	8	33	\$	7,604	\$	1,197	\$ 8,80)2	\$ 438,200	49.8

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Existing Conditions	22	12	34	66.4
With Implementation of Recommended Energy Project	7	10	17	33.7

Notes:

1. Noted savings and cost estimates are for reference only and are not guaranteed

2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.

3. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.

4. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks.

PREHENS

SOLUTIO

SAULT STE MARIE CITY WORKS FACILITY, SAULT STE MARIE ON MAIN BUILDING

Sub	savings Summary Table	Date	9-October-0	9	Ву		R	В	Page	1 of 1		
	Opportunity Savings Values given in the following table represent the savings for impl interrelated. Interelation refers to combining opportunities that m	-					-	-	or some measu	ires, if implem	ented togethe	; are
	OPPORTUNITY DESCRIPTION	ESTIMAT	ED ANNUAL C	ONSUMPTION		EST		NNUAL COST	TOTAL ESTIMATED	ESTIMATED	SIMPLE PAYBACK	INCLUDE IN ENERGY
		Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO ₂		Fuel \$	Electric \$	SAVINGS	COST	Years	PROJECT? (YES / NO)
	Routine											
1	Building Envelope: Replace / Install Exterior Door Seals	41,100			8	\$	1,921	\$-	\$ 1,921	\$ 3,200	1.7	YES
2	Building Envelope: Insulation Upgrade	81,400			15	\$	3,804	\$-	\$ 3,804	\$ 75,000	19.7	YES
3	Controls: Install Light Switches for HID Lighting Control	-72,000	76,200		0	-\$	3,365	\$ 5,677	\$ 2,312	\$ 2,600	1.1	YES
4	Lighting: T12 Fluorescent Fixtures to T8 with Electronic Ballasts	-28,000	29,600	68	0	-\$	1,309	\$ 2,631	\$ 1,322	\$ 10,000	7.6	YES
	Advanced											
5	HVAC: Radiant Heaters Above Garage Doors	41,800			8	\$	1,954	\$-	\$ 1,954	\$ 34,000	17.4	YES
6	HVAC: Natural Gas Fired Make-up Air Unit	-46,900	35,200	80	-2	-\$	2,192	\$ 3,124	\$ 932	\$ 18,000	19.3	NO
7	Lighting: HID High Pressure Sodium to T5 HO Fluorescent Fixtures	-18,400	19,500	6	0	-\$	860	\$ 1,490	\$ 630	\$ 8,000	12.7	YES
8	Lighting: HID Metal Halide to T5 HO Fluorescent Fixtures	-88,000	93,100	62	1	-\$	4,113	\$ 7,324	\$ 3,211	\$ 15,500	4.8	YES
	Aggressive											
9	HVAC: Boiler Retrofit	344,500			63	\$	16,101	\$-	\$ 16,101	\$ 72,000	4.5	YES
10	HVAC: Solar Wall for Pre-heating Ventilation Air	340,800	-7,100		61	\$	15,928	-\$ 529	\$ 15,399	\$ 240,000	15.6	YES
11	Lighting: Skylights for Vehicle Bays with Daylight Harvesting	-53,500	56,500		0	-\$	2,500	\$ 4,209	\$ 1,709	\$ 107,500	62.9	NO

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all included opportunities together in a single energy project. Interrelation between individual opportunities has been taken into consideration when determining these values.

	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	ESTIMATED A SAVI	NNUAL COST	TOTAL	ESTIMATED	SIMPLE PAYBACK
OPPORTUNITY DESCRIPTION	Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO₂	Fuel \$	Electric \$	ESTIMATED SAVINGS	COST	Years
Recommended Energy Project	613,300	137,600	136	138	\$ 28,664	\$ 11,103	\$ 39,768	\$ 460,300	11.6

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Existing Conditions	18	10	28	420.8
With Implementation of Recommended Energy Project	11	8	19	283.1

Notes:

1. Noted savings and cost estimates are for reference only and are not guaranteed

2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.

3. NOTE: If applying for funding from eccENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.

4. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks.

5. Thermal savings associated with waste oil burning have been excluded in totals.

SAULT STE MARIE CITY WORKS FACILITY, SAULT STE MARIE ON CARPENTRY SHOP

bic Savings Summary Table	Date	9-October-0	9	Ву		R	В	Page		1 of 1			
<u>Opportunity Savings</u> Values given in the following table represent the savings for imple interrelated. Interelation refers to combining opportunities that ma								r some	e measure	es, if im	plemen	ted together, a	are
OPPORTUNITY DESCRIPTION	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	ESTI		NNUAL COS	Т	TOTAL FIMATED	ESTIN	IATED	SIMPLE PAYBACK	INCLUDE IN ENERGY
OFFORTUNITY DESCRIPTION	Fuel kWh	Electric kWh	Demand <i>kW</i>	GHG tCO₂		The state	-	AVINGS	CO5		Years	PROJECT? (YES / NO)	
Routine													1
1 Building Envelope: Replace / Install Exterior Door Seals	8,200			2	\$	383	\$	- \$	383	\$	700	1.8	YES
Building Envelope: Window Replacement	7,200			1	\$	337	\$	- \$	337	\$	7,500	22.3	YES
Controls: Programmable Thermostats	8,800			2	\$	411	\$	- \$	411	\$	150	0.4	YES
Controls: Occupancy Sensor Control for Lighting	-2,600	2,900		0	-\$	122	\$ 21	6\$	95	\$	450	4.8	YES
Lighting: T12 Fluorescent Fixtures to T8 with Electronic Ballasts	-3,200	3,600	11	0	-\$	150	\$ 33	7 \$	188	\$	1,300	6.9	YES
Advanced													1
6 HVAC: Electric Resistance Heating to Gas Fired Heating	-6,500	7,400	11	0	-\$	304	\$ 62) \$	316	\$	6,000	19.0	NO

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all included opportunities together in a single energy project. Interrelation between individual opportunities has been taken into consideration when determining these values.

OPPORTUNITY DESCRIPTION	ESTIMATE	ED ANNUAL CO	ONSUMPTION	SAVINGS	ESTIMATED A SAVI	NGS	TOTAL ESTIMATED	ESTIMATED	SIMPLE PAYBACK
	Fuel	Electric	Demand	GHG	Fuel	Fuel Electric		COST	FAIDACK
	kWh	kWh	kW	tCO ₂	\$	\$	SAVINGS		Years
Recommended Energy Project	12,800	13,900	11	5	\$ 598	\$ 1,104	\$ 1,703	\$ 10,100	5.9

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2	
Existing Conditions	16	10	25	19.2	
With Implementation of Recommended Energy Project	13	6	19	14.3	

Notes:

1. Noted savings and cost estimates are for reference only and are not guaranteed

- 2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.
- 3. NOTE: If applying for funding from eccENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.
- 4. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks.

SOLUTIO

SAULT STE MARIE CITY WORKS FACILITY, SAULT STE MARIE ON TEST LAB

ubj€	Savings Summary Table	Date	9-October-0	9	Ву		RB		Page	1 of 1		
Values g	unity Savings iven in the following table represent the savings for imple ion refers to combining opportunities that may have a pos						ions. Sa	avings for s	ome measures	, if implemente	ed together, ar	e interrelated.
	OPPORTUNITY DESCRIPTION	ESTIMAT	ESTIMATED ANNUAL CONSUMPTION SAVINGS				ESTIMATED ANNUAL COST SAVINGS			ESTIMATED	SIMPLE PAYBACK	INCLUDE IN ENERGY
		Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO₂	Fuel \$		Electric \$	ESTIMATED SAVINGS	COST	Years	PROJECT? (YES / NO)
Routine												
1 Building E	Envelope: Replace / Install Exterior Door Seals		4,300		1	\$	- \$	320	\$ 320	\$ 300	0.9	YES
2 Building E	Envelope: Building Envelope Sealing		1,400		0	\$	- \$	104	\$ 104	\$ 400	3.8	YES
3 Controls:	Programmable Thermostats		5,100		1	\$	- \$	380	\$ 380	\$ 150	0.4	YES
4 Lighting:	T12 Fluorescent Fixtures to T8 with Electronic Ballasts		1,100	2	0	\$	- \$	94	\$ 94	\$ 700	7.4	YES
5 Equipmer	nt: Test Tank Insulation and Cover		400		0	\$	- \$	30	\$ 30	\$ 400	13.4	NO
Advance	d											
			12,000			Ť		894	\$ 894	\$ 12,000	13.4	NO

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all included opportunities together in a single energy project. Interrelation between individual opportunities has been taken into consideration when determining these values.

OPPORTUNITY DESCRIPTION	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	ESTIMATED A SAVI		TOTAL	ESTIMATED	SIMPLE PAYBACK
	Fuel <i>kWh</i>	Electric kWh	Demand <i>kW</i>	GHG tCO₂	Fuel \$	Electric \$	ESTIMATED SAVINGS	COST	Years
Recommended Energy Project		10,100	2	2	\$-	\$ 765	\$ 765	\$ 1,550	2.0

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2	
Existing Conditions	0	41	41	8.6	
With Implementation of Recommended Energy Project	0	33	33	6.8	

Notes:

- 1. Noted savings and cost estimates are for reference only and are not guaranteed
- 2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.
- 3. NOTE: If applying for funding from eccENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.
- 4. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks.

PREHENSI

SOLUTION

SAULT STE MARIE CITY WORKS FACILITY, SAULT STE MARIE ON NORTH STORAGE GARAGE

Subje	Savings Summary Table	Date	9-October-0	9	Ву		R	В	Page	1 of 1		
Values g	tunity Savings given in the following table represent the savings for implem tion refers to combining opportunities that may have a positi						nditions. S	avings for som	e measures, if	implemented t	ogether, are in	terrelated.
	OPPORTUNITY DESCRIPTION	ESTIMATED ANNUAL CONSUMPTION SAVING			SAVINGS	ESTIMATED ANNUAL COST SAVINGS			TOTAL ESTIMATED	ESTIMATED	SIMPLE PAYBACK	INCLUDE IN ENERGY
		Fuel <i>kWh</i>	Electric kWh	Demand <i>kW</i>	GHG tCO ₂		Fuel \$	Electric \$	SAVINGS	COST	Years	PROJECT? (YES / NO)
Routine												
1 Building	Envelope: Replace / Install Exterior Door Seals	206,200			38	\$	9,637	\$-	\$ 9,637	\$ 6,000	0.6	YES
2 Building	Envelope: Overhead Door Replacement	305,200			56	\$	14,264	\$ -	\$ 14,264	\$ 120,000	8.4	YES
3 Building	Envelope: Insulation Upgrade	123,500			23	\$	5,772	\$ -	\$ 5,772	\$ 34,000	5.9	YES
Advance	ed											
4 HVAC: F	Radiant Heaters Above Garage Doors	94,900			17	\$	4,435	\$-	\$ 4,435	\$ 42,000	9.5	YES
5 Controls	: Overhead Door Controls	39,200			7	\$	1,832	\$ -	\$ 1,832	\$ 36,000	19.6	NO
6 Lighting:	HID High Pressure Sodium to T5 HO Fluorescent Fixtures	-26,300	27,600	20	0	-\$	1,229	\$ 2,181	\$ 952	\$ 4,500	4.7	YES
Aggress	sive											
7 Lighting:	Skylights for Vehicle Bays with Daylight Harvesting	-15,000	15,800		0	-\$	701	\$ 1,177	\$ 476	\$ 45,000	94.5	NO

Recommended Energy Project

The following table represents the estimated combined annual savings from implementing all included opportunities together in a single energy project. Interrelation between individual opportunities has been taken into consideration when determining these values.

OPPORTUNITY DESCRIPTION	ESTIMAT	ED ANNUAL C	ONSUMPTION	SAVINGS	-	NNUAL COST	TOTAL	ESTIMATED	SIMPLE PAYBACK
	Fuel <i>kWh</i>	Electric <i>kWh</i>	Demand <i>kW</i>	GHG tCO ₂	Fuel \$	Electric \$	ESTIMATED SAVINGS	COST	Years
Recommended Energy Project	304,000	27,600	20	61	\$ 14,208	\$ 2,181	\$ 16,390	\$ 206,500	12.6

Benchmark & Screening Report

ENERGY USE INTENSITY	Fuel ekWh/ft ²	Electric ekWh/ft ²	Total ekWh/ft ²	Total GHG tCO2
Existing Conditions	38	3	41	147.8
With Implementation of Recommended Energy Project	23	2	24	86.8

Notes:

1. Noted savings and cost estimates are for reference only and are not guaranteed

2. Budgets and estimates represent the highest level of accuracy that can be achieved without further engineering study. The proposed project does not include any contingency or project management fees.

3. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings it is important not to start the retrofit project or incur eligible costs until receiving written approval from Natural Resources Canada.

4. NOTE: If applying for funding from ecoENERGY Retrofit Incentive for Buildings, caps may be placed on savings calculations. See note in main report regarding benchmarks.

PREHENS

SOLUTION