

City of Sault Ste. Marie

Landfill Expansion – Geotechnical Report

Prepared by:

 99 Commerce Drive
 204 477 5381
 tel

 Winnipeg, MB, Canada
 R3P 0Y7
 204 284 2040
 fax

 www.aecom.com

Project Number: 60117627 (402.19.1)

Date:

June, 2014

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");

represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;

may be based on information provided to Consultant which has not been independently verified;

has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;

must be read as a whole and sections thereof should not be read out of such context;

was prepared for the specific purposes described in the Report and the Agreement; and

in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

June 19th, 2014

Ms. Catherine Taddo, P. Eng. Engineering Department City of Sault Ste. Marie 99 Foster Drive, 5th Floor Sault Ste. Marie, Ontario P6A 5N1

Dear Ms. Taddo:

Project No: 601

60117627 (402.19.1)

Regarding:

Sault Ste. Marie Landfill Expansion - Geotechnical Report

AECOM Canada Ltd. (AECOM) is pleased to submit our report on the above referenced project. If you have any questions please do not hesitate to contact Zeyad Al-Hayazai, P.Eng. directly at 204 928 9221 or Rick Talvitie, P.Eng. at 705 942 2612.

Sincerely,

AECOM Canada Ltd.

Ron Typliski, P.Eng.

Vice President, Environment

R. V. Lyploti

Canada West Region

ZS:CM Encl.

cc:

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
2	1	City of Sault Ste. Marie
2	1	AECOM Sault Ste. Marie
1	1	File
1	An American Andrews and an Experience of the American Andrews and Americ	Faris Khalil
1		Zeyad Al-Hayazai

Revision Log

Revision #	Revised By	Date	Issue / Revision Description
1	Z. Shukri	June 18, 2014	Final Report
AECO	M Signatu	ires	Z. AL-HAYAZAI HI 100187502

Report Prepared By:

Zeyad Al-Hayazai, M.Sc, P.Eng.

Senior Geotechnical Engineer

Report Reviewed By:

Faris Khalil, M.Sc. P.Eng., PMP

Manager Geotechnical Engineering

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List

			Page
1	Intro	oduction	1
2	Site	Description	1
	2.1	Expansion Development Plan	
3	Geo	technical Investigation	2
	3.1	Field Work	2
	3.2	Subsurface Conditions	3
	3.3	Groundwater Condition	
4	Geo	technical Assessment	5
	4.1	Settlement	5
	4.2	Bearing Capacity	
	4.3	Stability Assessment	6
		4.3.1 Analysis Parameters	6
		4.3.2 Analysis Results	7
	4.4	Excavation	9
	4.5	Drainage	9
	4.6	Excavated Material	9
	4.7	Berms and Roadway Embankment	10
5	Clos	sure	10
List	of Table	S	
Table	e 01: Su	ımmary of GWL Monitoring	5
		rength Parameters for Stability Assessment	
Table	e 03: Su	mmary of Slope Stability Analysis	8

Appendices

Appendix A Photos
Appendix B Landfill Plan and Sections Appendix C Test Hole Location Plan
Appendix C Test Hole Location Plan
Appendix D Test Hole Logs
Appendix E Laboratory Test Results
Appendix F Slope Stability Analysis

1 Introduction

The City of Sault Ste. Marie (The City) retained AECOM to provide geotechnical engineering services for the proposed expansion of the existing landfill facility located north of Fifth Line and west of Highway 17 in the City of Sault Ste. Marie, Ontario. The existing landfill footprint covers an approximate area of 26 hectares. The capped waste embankment height is approximately 19.5 m above existing grade. Different side slope inclinations between 4H:1V and 20H:1V were used in the existing facility. The maximum thickness of the waste material in the existing landfill is estimated to be about 30 m thick.

The geotechnical scope of work for this project consisted of the following tasks:

- Review relevant information and published geotechnical data.
- Develop and complete a geotechnical field investigation program including utility locates, test hole drilling, soil sampling, instrumentation installation and laboratory testing.
- Complete geotechnical engineering studies including stability assessment for possible configurations during the service life of the facility and for the final configuration.
- Prepare a geotechnical report to document the geotechnical investigation, discuss geotechnical concerns and provide geotechnical recommendations related to the design and construction of the proposed expansion.

This report documents the 2013 geotechnical field investigation, discusses the geotechnical considerations and provides related geotechnical recommendations in support of the facility expansion. Environmental aspects and any potential impacts from the existing facility or the proposed work are beyond the scope of this report.

2 Site Description

The existing facility is located approximately 800 m northwest of the Fifth Line East and Highway 17 intersection. The proposed expansion is planned to take place on the north and west sides of the existing disposal footprint. Natural ground topography has been altered and the existing site topography varies from gently undulating to steep and hilly with isolated rock outcrops. The site is bordered by the Canon Creek on the north and east sides. Photos for general site view are presented in Appendix A (photos 1 and 2)

The Sault Ste. Marie area is at the southern boundary of the Superior Structural Province of the Canadian Shield and is characterized by bedrock of different geological settings. The physiography of the Sault Ste. Marie area is dictated primarily by the underlying bedrock structure and topography. The surficial soils in the area typically consist of sand and gravelly sand, of varying thickness. The landfill site is characterized by isolated bedrock outcrops, exposed conglomerate faces and sand as surficial material. Test holes drilled in the area confirmed the general surficial geology indicating the soil profile consists of sand, sand and gravel underlain by fine sand and some silt over bedrock.

A review of the existing site information indicates the groundwater flow is generally from north to south and from east to west. Groundwater conditions in the overburden deposits measured during the 2013 investigation support this observation.

2.1 Expansion Development Plan

To achieve the proposed end use development plan, the landfill expansion will be completed in a series of stages or cells involving both below grade and above grade refuse placement. Each cell or stage will be completed to or near final grade prior to moving forward with the next stage. This approach will reduce the extent of surface area exposed at any point in time and therefore reduce the net precipitation infiltration and overall leachate generation rate.

Each stage will generally include site preparation including topsoil stripping, cell excavation, exterior berm construction, compaction and lining of the cell's base soils. A leachate collection system will be installed as required by the design across the cell base. Once a below grade area has been completed, above grade development can then proceed in a series of lifts until the design grades for that area are achieved. Once the above grade area approaches final design grade in one cell, the next cell will be excavated and prepared to receive refuse. This sequence is repeated until all cells or stages have been developed and the final site topography has been reached.

The development stages of the proposed facility expansion are illustrated, in general, in Appendix B. The site has been divided into eight cells/stages to accommodate installation of a liner and leachate collection system across the base of the facility. A liner is also proposed in areas where waste from the expansion area will interface with the existing waste within the approved disposal footprint.

Development is planned to commence in the northeast corner of the site working towards the west along the north perimeter of the footprint and then to the south. Above grade exterior slopes should be formed through berm construction and final grading. Interior areas should be constructed as a series of benches with each bench extending outwards from the exterior berm as a terrace feature. The surface area of these terraces should be limited to prevent the formation of large plateaus with inadequate surface drainage. The terraces should be large enough, however, to allow for efficient landfilling operations.

In addition to the standard cell development, landfill mining is proposed in the southwest quadrant of the existing disposal footprint. Landfill mining involves the excavation of existing disposed waste and cover material, recovering the cover material, installing of a liner and leachate collection system along the original landfill base, and returning the waste to the disposal footprint.

Relevant information on ground profiles, landfill configurations and cross section were compiled to support geotechnical models across the site area. Landfill plan and cross sections used in the stability assessment are attached in Appendix B.

3 Geotechnical Investigation

3.1 Field Work

In the period from June 17th to 24th, 2013, AECOM completed a field based geotechnical investigation. The drilling was completed by TBT Engineering Consulting Group, using a tire mounted CME 750 drill rig equipped with 194 mm outside diameter hollow stem augers. The investigation included the drilling of sixteen (16) test holes (TH13-01 to TH12-09, TH13-10A, TH13-10B, TH13-10C, TH13-11A, TH13-11B, TH13-12 and TH13-13. Four (4) test holes were advanced into the existing landfill (TH 13-01, TH13-04, TH13-11A and TH 13-11B). The approximate locations of the test holes are shown on the test hole location plan in Appendix C.

Ten (10) test holes (TH13-01 to TH13-05, TH13-07 to TH13-09, TH13-11B and TH13-13) were advanced to a depth greater than 10 m. Six (6) test holes (TH13-06, TH13-10A, TH13-10B, TH13-10C, TH13-11A and TH13-12) encountered auger refusal and were terminated at depths between 2.5 to 6.1 m below existing ground surface. Standard Penetration Test (SPT) was completed at regular intervals. Disturbed soil samples were collected for further visual inspection and testing. Four (4) standpipe piezometers were installed at the location of TH13-07, TH13-08, TH13-10C and TH13-11B, to measure groundwater levels (GWL) in the foundation soil and in the municipal solid waste (MSW). Laboratory testing included: moisture content, gradation, and direct shear tests.

Logs have been prepared for each test hole to record the description and the relative position of the soil strata, location of samples obtained, field and laboratory test results, and other pertinent information. Test hole logs and laboratory test results are attached in Appendix D and E, respectively.

3.2 Subsurface Conditions

The existing grade elevations varied across the site from elevation 279.0m for the existing ground to 310.5m at the top of existing landfill. In descending order the soil profile generally consists of:

- Topsoil
- Fill
- Municipal Solid Waste (MSW)
- Upper Sand
- Sand and Gravel / Conglomerate
- Lower Sand
- Bedrock

Each of these units is described further below:

Topsoil

Topsoil was encountered at the ground surface in test holes TH13-06, TH13-08, TH13-09, TH13-10A, TH13-10B, TH13-10C, TH13-12, and TH13-13. The topsoil thickness ranges from 0.10 to 0.30 m. Generally, the topsoil is sandy, brown to dark brown, loose, moist to dry, organic and contains trace amounts of gravel, trace amounts of cobbles and trace amounts of clay.

<u>Fill</u>

Fill was encountered at ground surface in test holes TH13-01 and TH13-04. In test hole TH13-01, the fill is 1 m thick and mainly consists of sand, trace gravel, trace cobble, and trace organic. The fill is brown, loose, dry, and medium to coarse grained. The fill encountered in test hole 13-04 is 0.1 m thick and mainly consists of sand and gravel and trace organic.

Municipal Solid Waste (MSW)

MSW was encountered in test holes TH13-01, TH13-04, TH13-11A and TH13-11B where the drilling was advanced into the existing landfill. The MSW consists of paper, cloth, wood, rubber and other miscellaneous trash. Variable amounts of sand were observed in the MSW as shown in Photos 3 and 4, Appendix A. The MSW is dark brown to black in color and wet. SPT blow counts in the MSW range from 11 to 60.

Upper Sand

Sand 1.4 to 7.5 m thick was encountered below the top soil or at ground surface in TH13-03, TH13-08 to TH13-10C, TH13-12 and TH13-13. Generally, the sand contains trace amounts of gravel and trace amounts cobbles. The sand is brown, compact to dense, moist and medium to coarse grained. The moisture content from laboratory measurements ranges from 5 to 13 percent. SPT blow counts in the sand range from 12 to 49.

Sand and Gravel Deposit

Sand and gravel 1.5 to 10.5 m thick was encountered beneath the upper sand at the location of test holes TH13-03, TH13-08, TH13-09, TH13-10A, TH13-10B TH13-10C, TH13-12 and TH13-13. Sand and gravel was also observed at ground surface in test holes TH13-02, TH13-06 and TH13-07. Generally, the deposit contains some cobbles, and trace amounts of boulders. The deposit is brown, compact to dense, and moist. Generally, the sand is medium to coarse grained. The moisture content from laboratory measurements ranges from 2.5 to 11 percent. SPT blow counts range from 16 to refusal (i.e., three consecutive 50 blows/150 mm or 100 blows/300 mm). Sand and gravel matrix observed from exposed faces on site is dense to very dense. Laboratory measurement for moisture content ranges from 2.5 to 6 percent.

Observation of exposed faces of this unit revealed the strata as a conglomerate, as shown in Photo 05 and 06 in Appendix A. The unit consists of sub-rounded to rounded grains of variable sizes up to boulders size (i.e., > 200 mm). The observed matrix is poorly sorted and cemented.

Lower Sand

Sand 6.7 to 23.7 m thick was encountered below the conglomerate at the location of test holes TH13-03, TH13-07 to TH13-09, and TH13-13 and directly underneath the MSW in test holes TH13-01 and TH13-11B. Generally, the sand contains some fines and trace gravel. The sand is brown becoming pinkish brown with increasing depth, compact to dense, moist to wet, and medium to fine grained. The moisture content from laboratory measurements ranges from 5 to 13 percent. SPT blow counts in the sand range from 14 to refusal. Blow-up was observed in the sand below the groundwater table.

Bedrock

Auger refusal on suspected bedrock was encountered in test holes TH13-02, TH13-09, TH13-10B and TH13-10C at elevation 300, 265, 297 and 297 m, respectively.

Rock outcrops were observed at the northern boundary of the landfill extending towards the northwest. The observed outcrops were knobby with an irregular topography.

3.3 Groundwater Condition

Groundwater elevations from the four (4) standpipe piezometers installed at the Site are presented in Table 01. The piezometers were installed to monitor groundwater condition and assist in interpretation of groundwater flow direction and gradients within the overburden. The locations of the standpipe piezometers are shown on Figure 01 in Appendix C.

Monitoring results from TH/MW13-10C suggest a suspected perched groundwater at elevation 299.3 m in the sand and gravel conglomerate. Monitoring results from TH/MW13-11B indicate perched leachate level in MSW at elevation 285.4 m or 8.2 below the existing landfill grade. Groundwater levels may vary seasonally, annually or due to construction or landfilling activities and waste composition.

In normal conditions, leachate level in the MSW is maintained at low elevation within the landfill due to the (relatively) high permeability of the waste material and the performance of the leachate collection system; however, due to the natural non consistency of the material forming the MSW, local water entrapment can occur and cause perched water level in the landfill.

For the purpose of stability analysis, the groundwater elevation in the sand and in the MSW is generally assumed at elevation 280 and 290 m, respectively.

Standpipe ID	Location	Soil Unit Installed in	Ground Surface Elevation (m)	Date	Measured Groundwater Elevation (m)
MW13-01	TH13-07	Lower Sand	281.4	June 21, 2013 June 22, 2013 June 23, 2013 June 25, 2013	Installed 263.7 263.7 264.5
MW13-02	TH13-08	Lower Sand	291.7	June 22, 2013 June 22, 2013 June 25, 2013	Installed 261.3 262.9
MW13-03	TH13-10C	Sand & Gravel Conglomerate	302	June 23, 2013 June 23, 2013 June 25, 2013	Installed 299 298.4
MW13-04	TH13-11B	MSW	293.6	June 24, 2013 June 25, 2013	Installed 285.4*

Table 01: Summary of GWL Monitoring

4 Geotechnical Assessment

4.1 Settlement

The rate and magnitude of landfill settlement is an important performance consideration. Generally, case histories suggest that waste has consolidation characteristics similar to peat, namely rapid initial consolidation followed by secondary consolidation. The rate and magnitude of waste settlement have been found to vary primarily with the unit weight and overburden pressure. Therefore settlement observed in deep landfills is larger than shallow landfills.

Over the long term, a typical waste fill might settle between 10 to 25 percent of its total thickness. Settlement in landfills is a result of different mechanisms: (a) distortion, bending, crushing and reorientation, (b) plastic creep, (c) raveling, (d) corrosion, oxidation and combustion, and (e) biochemical decay. The density achieved from compaction is the key factor influencing the magnitude of landfill settlement. Due to long term settlement, the initial side slopes should be expected to change; therefore, post closure maintenance may need to consider re-grading of slopes.

^{*}leachate level in the MSW

Settlement magnitude for landfills is difficult to estimate due to material variability within the waste fill; therefore, a typical settlement range of 10 to 25% of the landfill thickness, as mentioned above, should be expected within the lifetime of the landfill.

Differential settlement will occur between the perimeter road/berm fill and the waste within the disposal footprint and at the interface between the recently placed and existing MSW (as shown in section alignment 2A-2013 and section A-A in Appendix A). With the implementation of proper compaction technique, such settlements can be mitigated. Relative differential settlement between new and existing waste may adversely impact and cause internal tensile stresses in the liner systems. In this regard, it is recommended to install two (2) additional reinforcement layers of high strength geogrid such as Tensar UX1800HS or equivalent. The proposed geogrid layers will contribute to the required resistance to the tensile stress induced in the liner and protect the linear.

The final cover of the landfill should be monitored. A settlement monitoring program is proposed for the initial cells so that settlements are recorded. The monitoring results will be used to assess and verify the anticipated settlement and modify the design of the uncompleted cells, as required.

4.2 Bearing Capacity

An analysis was carried out to assess the bearing capacity of the foundation soil below the proposed waste fill embankment. The analysis was undertaken to assess the height to which the waste embankment can be constructed. Based on the provided geometry for the proposed landfill expansion, bearing capacity is not anticipated to be a concern for the design thickness of 33 m (i.e. Elevation 311 m).

4.3 Stability Assessment

Stability assessment was carried out to investigate the stability of the proposed landfill configurations, in terms of height and overall side slope that could be developed to maintain acceptable factors of safety against slope instability. An adequate Factor of Safety (FS) against slope instabilities must be achieved for the proposed waste embankment side slopes. In this regard, a design objective FS of 1.5 has been selected for the long term condition consistent with acceptable design practice. The granular nature of the foundation soils is favourable for stability as excess pore water pressure is not anticipated to develop in response to loading. Therefore, the short term, end of construction, condition was not considered in the stability assessment.

Stability assessment consisted of a limit equilibrium slope stability analysis using software developed by GeoStudio International. Both circular and non-circular failure surfaces were analyzed. Groundwater levels modelled in the analysis were based on a groundwater monitoring program installed during 2013 field work and based on a data collected from the existing monitoring wells around the landfill area.

4.3.1 Analysis Parameters

The soil strength parameters adopted in the analysis are summarized in **Table 02**. These parameters are derived based on correlation with index soil properties from laboratory test results and back analysis stability results. Since layers of daily cover soil are likely to be thin and irregular in comparison to the layers of refuse, no distinction was made between the two.

Back analysis was performed to establish and assign strength parameters to the waste material. The analysis was completed for the existing landfill geometry assuming a FS close to unity. Different scenarios were considered in the back analysis using different sections and piezometric levels.

Table 02:	Strength	Parameters for	Stability	/ Assessment
-----------	----------	----------------	-----------	--------------

Matarial	11m24 18/m231	Effective Str	ess Analysis	Crave durates Flore (m)
Material	Unit Weight, γ (kN/m³)	Cohesion, C' (kPa)	Friction Angle, φ' (°)	Groundwater Elev. (m)
Sand (upper)	16.5	0	30	
Sand and Gravel	17.0	0	33	265 - 280
Sand (lower)	16.7	0	Cohesion, C' (kPa) Friction Angle, φ' (°) 0 30	
MSW	12.0	1	18	
Bedrock		Impen	etrable	

4.3.2 Analysis Results

The proposed excavation configuration and construction staging plan were made available by Dillon Consulting and used to complete the stability assessment. Stability analyses were completed for two construction stages for each cell:

- Stage 1: side slope stability for excavations below existing ground and adjacent to the existing landfill,
- Stage 2: side slope stability for embankment at design height

The results of the analysis are presented graphically in Appendix F and are summarized in **Table 03**. The following recommendations are provided based on the findings of the stability analysis:

- Excavation side slope shall not be steeper than 3H:1V.
- Landfill slopes less than 10 m high can be constructed at side slopes of 4H:1V. Flatter slopes 5H:1V shall be used for fill height between 10 and 15m. For fill heights greater than 15 m side slope at 6H:1V or flatter is recommended.
- The piezometric condition associated with groundwater within the existing waste fill has a significant impact on the stability. The analyses were completed to investigate the maximum groundwater level at which the design objective FS=1.5 would be maintained. In this regard, the groundwater level should be controlled at or below elevation 290 m in the cells located at the west side (i.e., Cell 1A, 3, 4 and 6). Leachate level ranged from 290 m (at Cell 2 and Cell 5) to 294 m (at Cell 1 and Cell 7) can be tolerated. Groundwater level variation in the order of 1 m could impact the calculated FS. Monitoring is recommended during and post cell development to observe and protect against development of higher groundwater levels.
 - Generally, groundwater elevation in the lower sand has a limited impact on the stability analysis as the modelled groundwater level is relatively deep and below theoretical slip surfaces.
- Perimeter berms up to 3 m high and 6 m crest wide can be constructed at 3H:1V side slopes.

AECOM

Table 03: Summary of Slope Stability Analysis

Cell #	Cross Section	Construction Stage	Critical Side Slope	Groundwater Elev. (m)	Leachate Level Elev. (m)	Critical FS	Figure #
	4 . 400 . 004.4	1	3H:1V	280	-	1.72	01
Cell 1	1+400 - 2014	2	4H:1V	280	298	1.59	02
Cell I	Alignment 3 -	1	4H:1V	280	-	2.3	03
	2013	2	4H:1V	Section Field	04		
	A A 2014	1	3H:1V	274	-	1.72	05
Cell 1A	A - A - 2011	2	4H:1V	274	290	1.53	06
Cell IA	0 0 0044	1	3H:1V	280	-	1.73	07
	C – C - 2011	2	4H <i>:</i> 1V	280	290	1.65	08
	Alignment 2A	1	5H:1V	280	290	1.7	09
Call 2	- 2013	2	4H:1V	280	290	1.74	10
Cell 2	Alignment 3 –	1	5H:1V	280	292	1.76	11
	2013	2	5H:1V	280	294	1.84	12
	0+100 – 2014	1	3H:1V	270	-	1.73	13
Coll 3		2	5H:1V	268	290	1.52	14
Cell 3	B - B - 2011	1	3H:1V	280	-	1.65	15
		2	6H:1V	280	290	1.59	16
	A - A - 2011	1	5H:1V	280	290	1.67	17
Coll 4		2	6H:1V	280	290	1.67	18
Cell 4	C - C - 2011	1	3H:1V	280	290	2.0	19
		2	4H:1V	280	290	1.56	20
	Alignment 3 - 2013	1	5H:1V	280	- 1.72 01 298 1.59 02 - 2.3 03 292 1.64 04 - 1.72 05 290 1.53 06 - 1.73 07 290 1.65 08 290 1.74 10 292 1.76 11 294 1.84 12 - 1.73 13 290 1.52 14 - 1.65 15 290 1.52 14 - 1.65 15 290 1.59 16 290 1.67 17 290 1.67 18 290 2.0 19 290 1.56 20 294 1.83 22 290 1.52 23 - 1.72 24 290 1.51 27 294 1.87 28 - 1.73 26	21	
Cell 4 Cell 5 Cell 6		2	6H:1V	280	294	1.83	22
	B - B - 2011	1	4H:1V	265	290	1.52	23
	0+400 - 2014	1	3H:1V	280	-	1.72	24
Cell 3 Cell 4 Cell 5 Cell 6 Alignment of the content of the cell 7 Cell 7		2	6.2H:1V	280	290	1.74	25
	0+200 - 2014	1	3H:1V	280	-	1.73	26
		2	6.6H:1V	280	290	1.51	27
	Alignment 3 - 2013	1	5H:1V	280	294	1.87	28
Cell 7	0+700 – 2014	2	3H:1V	280	-	1.73	29
		1	4H:1V	280	294	1.67	30

4.4 Excavation

The means and methods of the excavation is the responsibility of the Contractor. All excavations shall be in accordance with applicable regulations of Ontario's Workplace Health and Safety. As per Ontario's Occupational Health and Safety Act, the excavated soil is generally classified as Type 2 soil. The Contractor shall prepare an excavation plan observing the recommendations provided in this report. Conventional mechanical/hydraulic excavation and earth moving equipment are expected to perform satisfactorily. Based on short term groundwater monitoring readings presented in Table 01 and the historical groundwater monitoring data around the landfill area, the GWL is anticipated below the planned excavation level between elevation 263 and 264 m. A perched GWL is suspected in a zone of moderate permeability cemented conglomerate. Provisions for construction dewatering and groundwater control should be allowed for in project schedule and cost where this unit is encountered in the excavation. Groundwater seepage could result in undermining and loss of toe support which could eventually adversely impact the stability of cut slopes. In these events, AECOM should be contacted to assess site conditions and review design recommendations, as required.

The engineering design recommendations presented within this report are based on the assumption that an adequate level of monitoring will be provided during construction. An adequate level of monitoring is considered to be full-time onsite supervision during the cell excavation.

4.5 Drainage

The importance of internal drainage within the landfill cannot be overstated. The potential for low permeability barriers within the waste may impede drainage and raise the piezometric level and adversely impact the stability of the fill. It is essential to incorporate an efficient leachate collection system in the design to promote downward migration and protect against mounding of liquid within the waste. Regular monitoring of the performance of the leachate collection system should be an integral part of the operating procedures.

The components of the drainage system buried within the landfill will be subjected to significant vertical and lateral strain. The leachate collection system design shall account for these conditions.

4.6 Excavated Material

Excavated material can be used to construct perimeter berms and roadway embankments (side slopes should not be steeper than 3H:1V). The excavated materials may also be used for soil cover. Soils for roadway embankment construction should exclude any organic or deleterious objects or materials. When an area is scheduled for excavation, the topsoil should first be removed and stockpiled for reuse and the excavated soil incorporated into roadway embankments or stockpiled in temporary berms for future use. Areas to be used for stockpiles should also be stripped of the topsoil prior to placing material in these areas. Stockpiles should be setback at safe distance not less than 5 m from open excavations.

As the site develops, space will be restricted and it may become more difficult to find suitable stockpile locations. In later years, material can be placed around the perimeter of the site. If material is placed in an area proposed for future landfill development, it is important that the stockpile is depleted prior to scheduling excavations in these areas.

4.7 Berms and Roadway Embankment

The construction of berms may be required to shield the landfill operations, to reduce noise and litter problems, and to provide an initial slope against which to place and compact refuse and facilitate the overall stability.

The above grade berms will be constructed as per final grading. The construction of perimeter berms is required to provide an initial slope against which to place and compact refuse and to direct surface water away from the active operations.

Sand berms can be constructed and lined with an appropriate geosynthetic liner to control seepage. Side slopes with a maximum height of 5m should not be steeper than 3H:1V, higher berms can be constructed with a side slope not steeper than 4H:1V. All construction activities should be subject to quality control testing.

The following recommendations are provided with respect to roadway construction on berms:

- All topsoil and deleterious material should be removed before placement of fill.
- Fill shall be placed in 300 mm lifts and compacted to 95% of Standard Proctor maximum dry density.
- Wet or soft subgrade areas should be excavated and replaced with suitable fill.
- Prior to placement of fill, the subgrade should be scarified to a depth of 200 mm and compacted to 95% of Standard Proctor maximum dry density.
- During construction all surfaces and construction areas should be adequately graded to facilitate drainage.

Based on a preliminary assessment of the anticipated use, the following preliminary pavement alternatives are provided. Further engineering input will be required to develop the final design pavement section:

Concrete surface: 150 mm concrete

150 mm base crushed granular

750 mm compacted fill

Asphalt surface: 130 mm asphalt

150 mm base crushed granular150 mm subbase crushed granular

750 mm compacted fill

5 Closure

The findings and recommendations of this report were based on the results of field and laboratory investigations, combined with an interpolation of soil and ground water conditions between the test hole locations. If conditions are encountered that appear to be different from those shown by the test holes drilled at this site and described in this report, or if assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendation can be reviewed and justified, if necessary.

Soil conditions, by their nature, can be highly variable across a site. The placement of waste fill and prior construction activities on a site can contribute to the variability especially near surface soil conditions. A contingency should be included in the construction budget to allow for possibility of variation in soil conditions, which may result in modifications of the design and construction procedures.

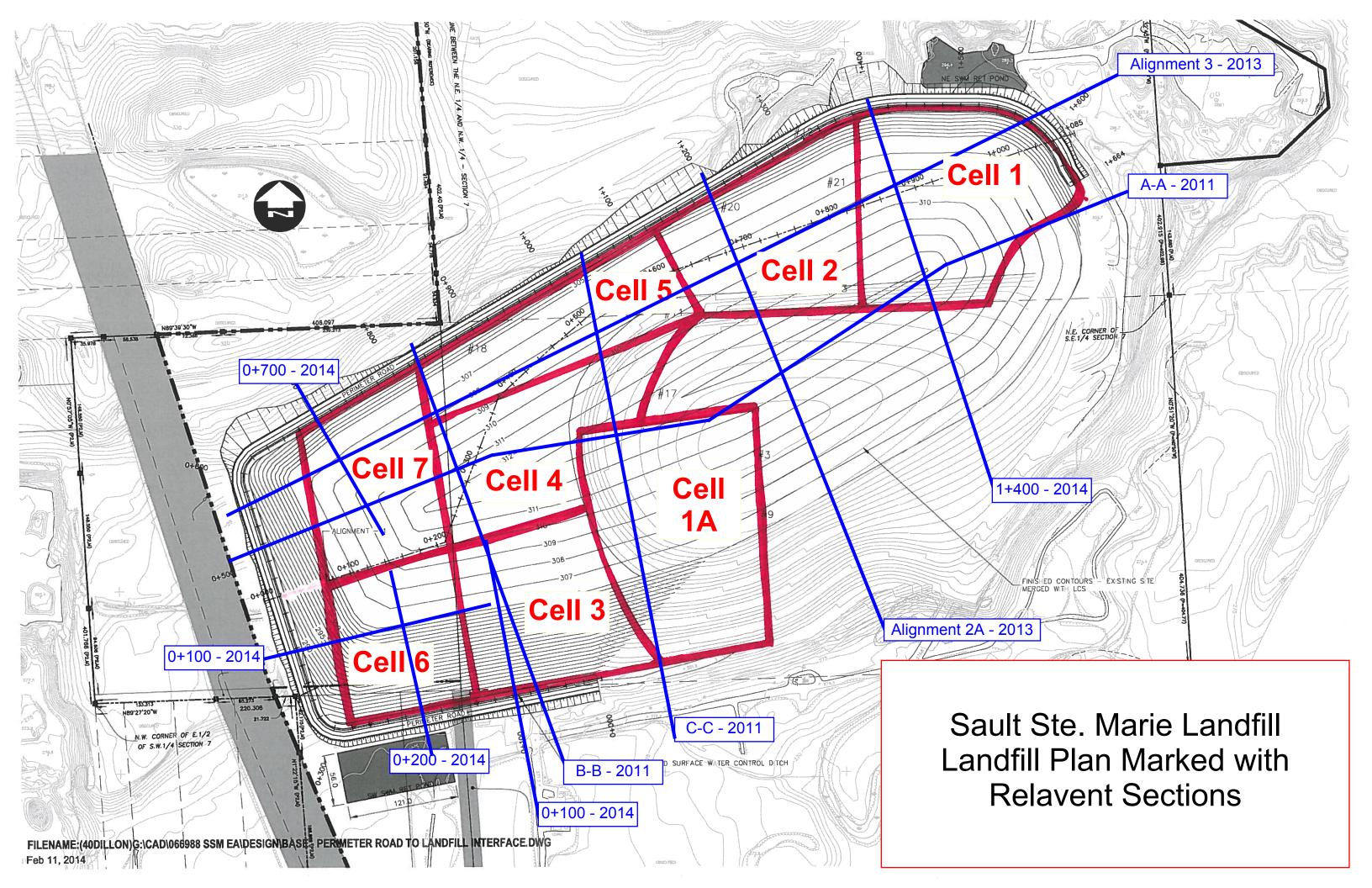
Appendix APhotos

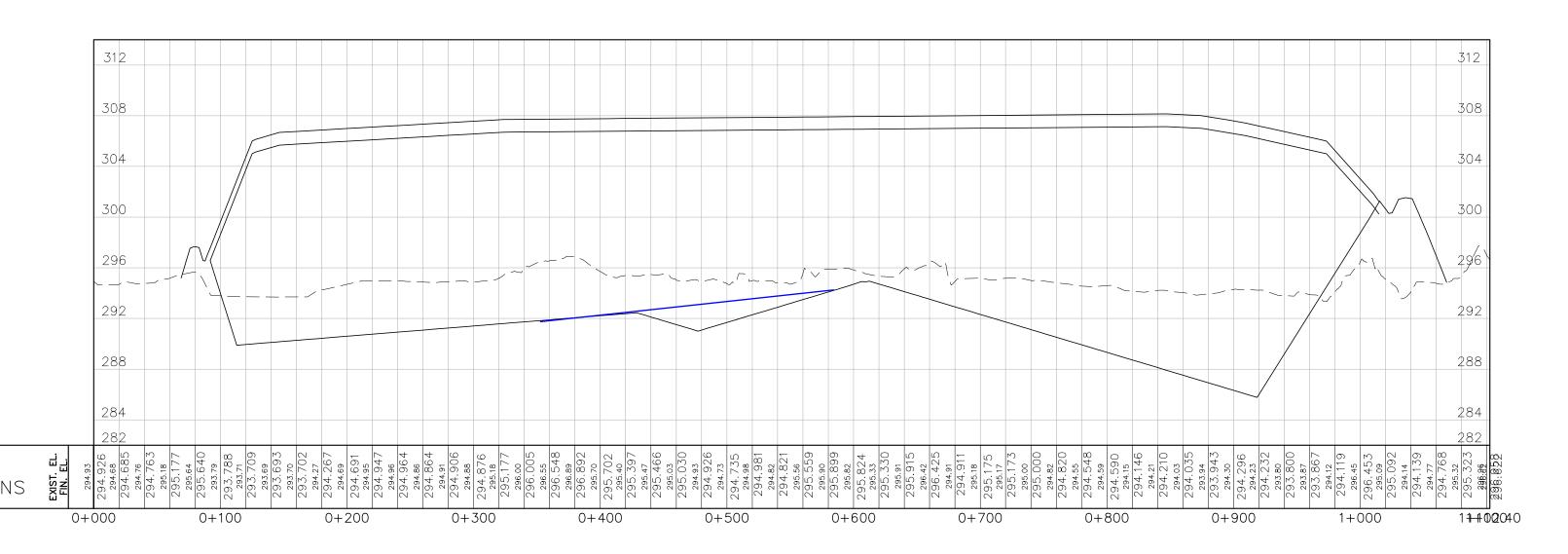
Photo 01: General site view, looking northeast

Photo 02: General site view, TH13-01, looking northeast

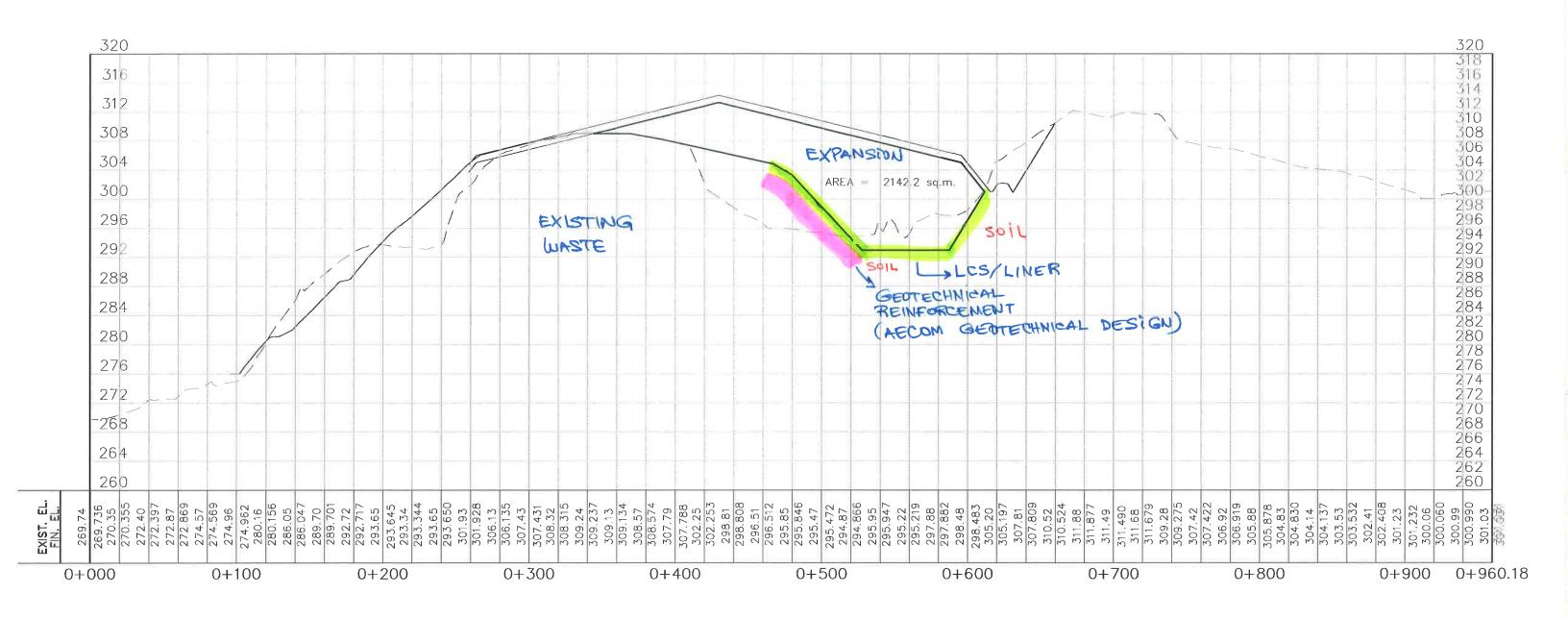
Photo 03: Waste material collected during drilling, TH13-01

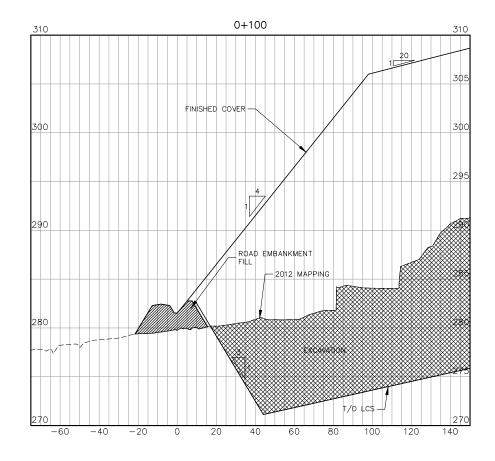
Photo 04: Waste material collected during drilling, TH13-01


Photo 05: Exposed Conglomerate unit, looking northwest from TH13-01.


Photo 06: Exposed Conglomerate unit, looking northwest from TH13-01.

Appendix B Landfill Plan and Sections




Alignment 3 - 2013

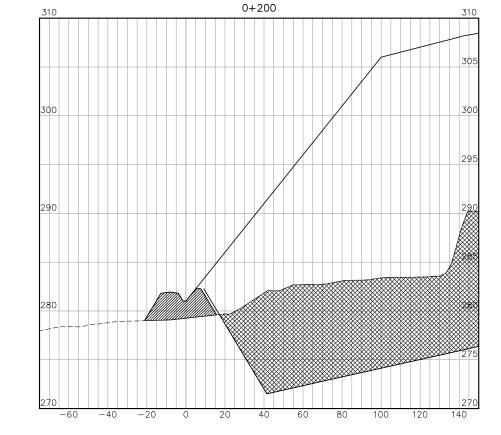
Alignment — 2 a

Alignment 2A - 2013

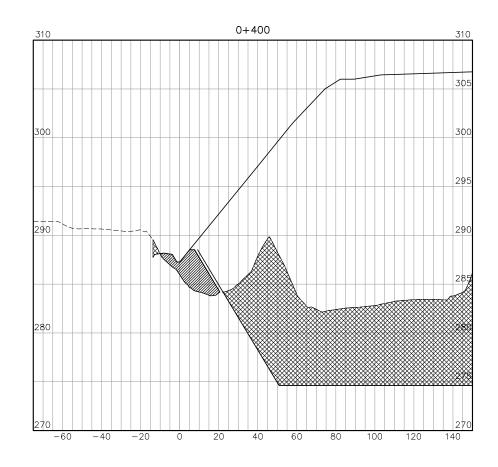
2 OF 4

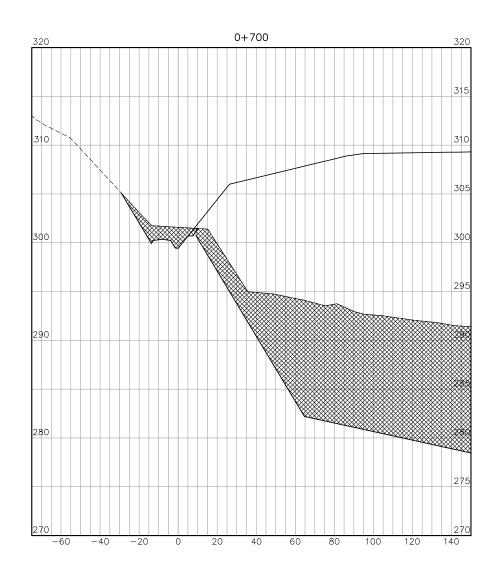
Cover area: 327,000 sq.m. (1 m thick)

LCS Area below 2012 Mapping: FLOOR 97,200 sq.m., 0.75 m THICK SIDE SLOPES 42,200 sq.m., 0.50 m THICK

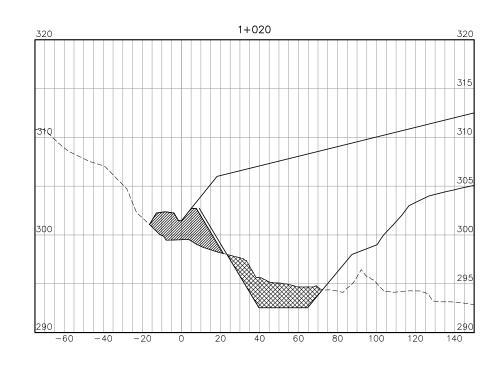

LCS VOLUME: $(97,200 \times 0.75) + (42,200 \times 0.5) = 94,000 \text{ cu. m.}$

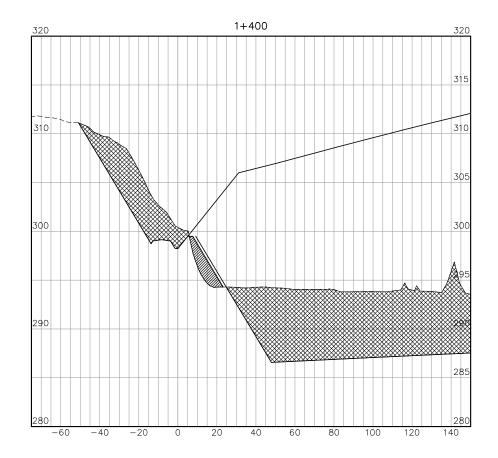
Excavation: 1,151,000 cu.m.

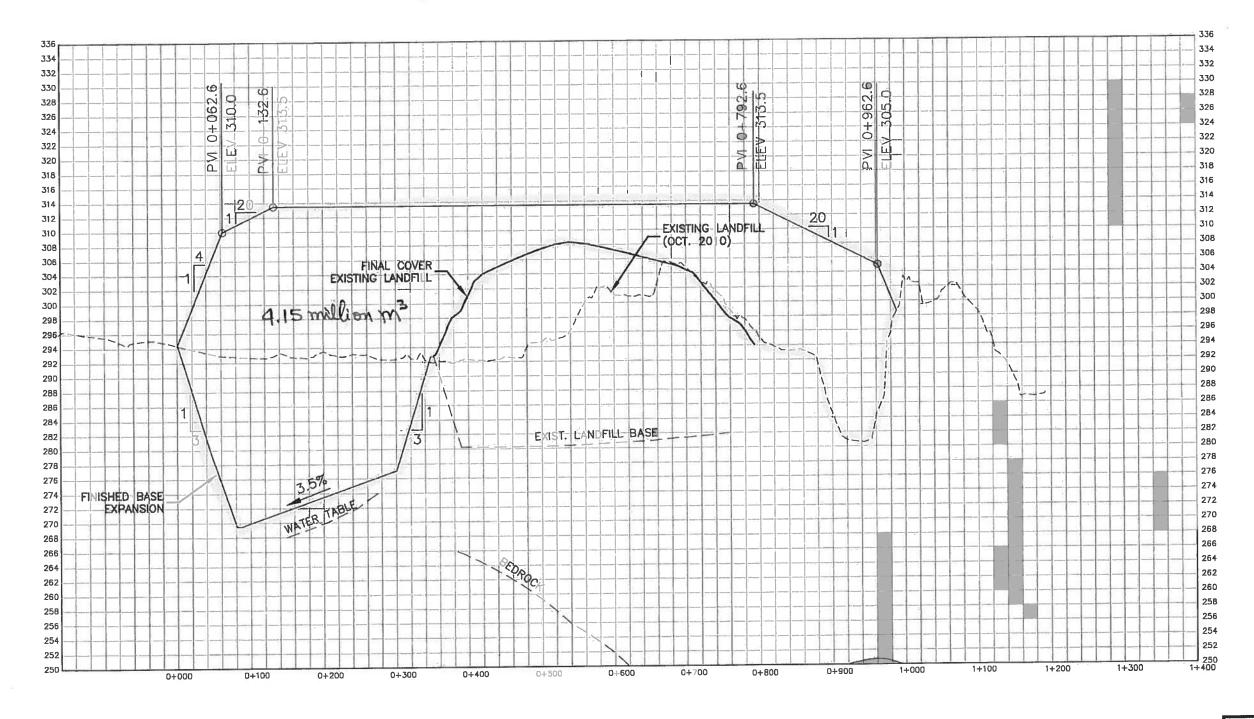

Daily and Int. Cover: (-800,0000 cu.m.)


Road Embankment: (-54,000 cu.m.)

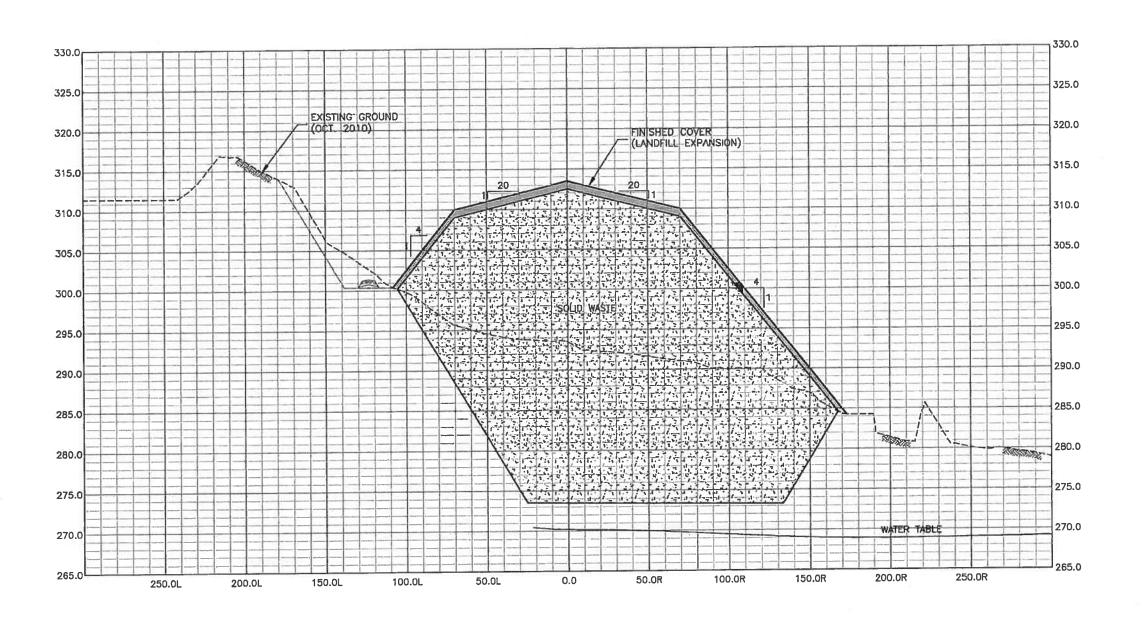
Soils: 1,151,000 + 94,000 - 800,000 - 327,000 - 54,000 = <u>64,700u.m.</u>



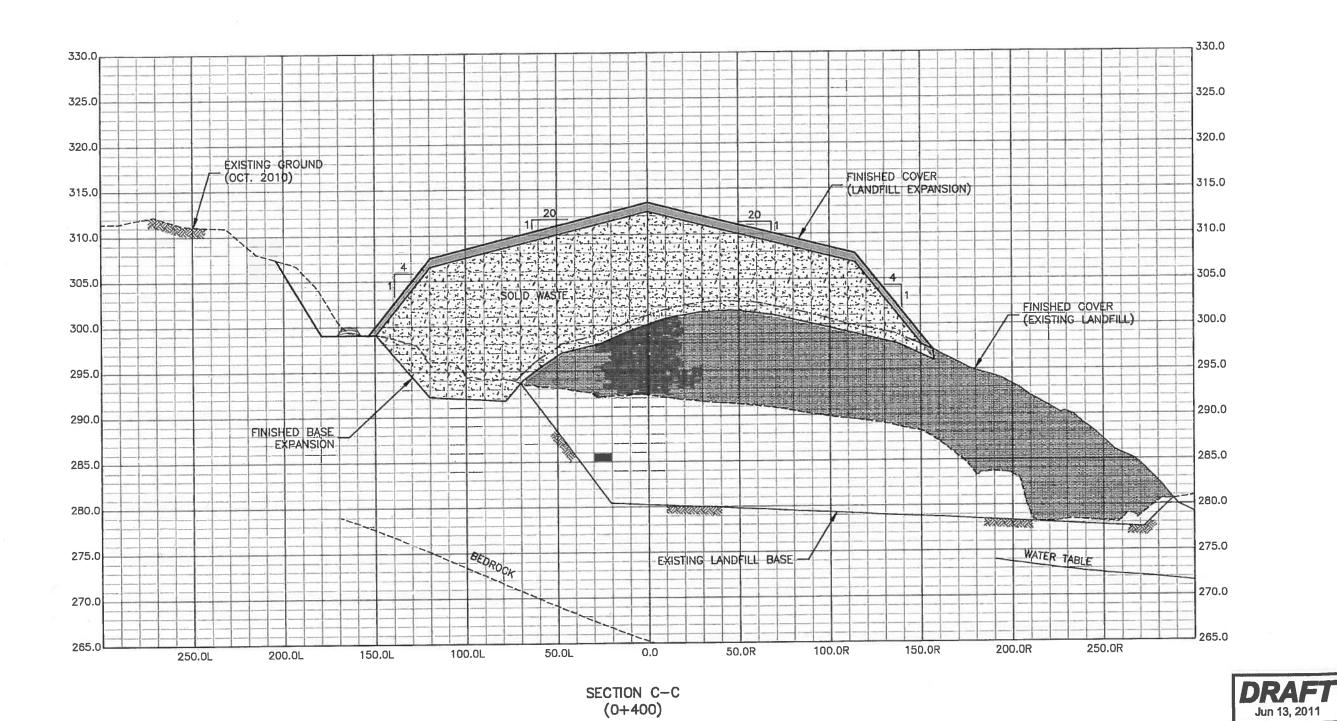

0+100 and 0+200 - 2014



0+400 and 0+700 - 2014


1+400 - 2014

SECTION A-A (0+200)


A - A - 2011

SECTION B-B (0+200)

B - B - 2011

C - C - 2011

Appendix C Test Hole Location Plan

Test Hole and Monitoring Well Location Plan

Figure: 01

City of Sault Ste. Marie

Sault Ste. Marie Landfill Expansion

Appendix D Test Hole Logs

LOCA	TION	Sault St. Marie - Landfill Ex: 16 T Easting: 705070 Nor	thing: 5163139 UTM N 0.0			0	., 010	Sault Ste. N				STHOLE NO: TH13-0 ROJECT NO.: 6011762	
CONT	RAC	TOR: TBT Engineering Con	sulting Group	N	1ETH	IOD:	Tire M	ounted CM	IE 750,	, HSA 194 mm	EL	EVATION (m): 296.70)
SAMF	PLE T	YPE GRAB	SHELBY TUBE	\boxtimes	SPL	IT SPC	ON	BUL		∠ NO RI			
DEPTH (m)	SOIL SYMBOL	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	 ♦ SPT 0 20 16 17 	Total Unit Wt (kN/m³) 18 19 stic MC Li	e ♦ Test) ♦) 80 100	Field Vane € (kPa)] 	COMMENTS	i
0		SAND (FILL) - organic, trace gra - brown, loose, dry - medium to coarse grained	vel, trace cobble										2
1		MUNICIPAL SOLID WASTE (MS	SW)		,								
2				X	S01	43						SPT 5, 5, 38 blows/150 mm SPT Recovery 6%	2
3		- moist below 3.1 m		X	S02	8	•					SPT 7, 5, 3 blows/150 mm	
4					G03							SPT Recovery 11%	2
5		- dark brown to black, wet, some	cobbles below 4.6 m	X	S04	10						SPT 12, 8, 2 blows/150 mm SPT Recovery 8%	
6				X	S05		*					SPT 8, 10, 6 blows/150	4
7				_	S07	51/			***			SPT Recovery 11% SPT 51 blows/51 mm	
8						51mm						SPT Recovery 0%	
9		- moist to dry below 9.1 m		\times	S08	10211111			» (SPT 59 blows/152 mm SPT Recovery 0%	2
10		SAND (Lower) - trace gravel - brown, compact, moist - medium to coarse grained		X	G09 S10		•					SPT 12, 11, 10 blows/150 mm SPT Recovery 71%	2
11													2
12					S11	26						SPT 8, 11, 15 blows/150	2
13						20						mm SPT Recovery 67%	:
14		- dense below 13.7 m		X	S12	38		•				SPT 18, 19, 19 blows/150 mm SPT Recovery 83%	:
15													2
		A = CO	A.4					SED BY: Sa				ETION DEPTH: 20.42 m	
		A=CO	/ / I					EWED BY:		Shukri C Rick Talvitie	JUMPL	ETION DATE: 6/18/13 Page	

CONTRACTOR: TET Engineering Consulting Group METHOD: The Mounted CME 750, HSA 194 mm ELEVATION (m): 286.70		Sault St. Marie - Landfill Expansion : 16 T Easting: 705070 Northing: 5163139 UTM N 0.0 B			IT: C	ity Of Sault Ste. Marie TESTHOLE NO: TH13-01	
SAMPLE TYPE					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PROJECT NO.: 60117627 Tire Mounted CME 750, HSA 194 mm FI EVATION (m): 296 70	•
SOIL DESCRIPTION SOIL DESCRIP							
- trace silt, pinkish brown, fine to medium grained below 15.2 m - Gravel: 0%, Sand: 91.0%, Fines: 9.0% - Trace covery 96% - Trace cobbles, trace exidation below 18.3 m - Trace cobbles, trace exidation below 18.3 m - Sept 8, 14, 16 blows/150 mm SPT Recovery 46% - SPT 8, 14, 13, 18 blows/150 mm SPT Recovery 46% - SPT 8, 14, 13, 18 blows/150 mm SPT Recovery 46% - SPT 8, 14, 13 blows/150 mm SPT Recovery 58% - SPT 8, 14, 13, 18 blows/150 mm SPT Recovery 58% - SPT 10, 14, 16 blows/150 mm SPT Recovery 58% - SPT 10, 14, 16 blows/150 mm SPT Recovery 63% - SPT 10, 14, 16 blows/150 mm SPT Recovery						PENETRATION TESTS	FI FVATION
-18 -trace cobbles, trace oxidation below 18.3 m		- trace silt, pinkish brown, fine to medium grained below 15.2 m - Gravel: 0%, Sand: 91.0%, Fines: 9.0%	X	S13	30	● ◆ SPT 8, 14, 16 blows/150 mm	28
-trace cobbles, trace oxidation below 18.3 m -trace cobbles, trace oxidation below 19.4, 18 blows/150 mm -trace cobbles, trace oxidation below 18.3 m -trace oxidation below 19.4, 18 blows/150 mm -trace oxidation below 19.4, 16 blows/150 mm -trace oxidation 19.4, 16 blows/150 mm -trace oxidatio	-17	- wet below 16.8 m	X	S14	31		28
END OF TEST HOLE AT 20.4 m IN SAND. NOTES: 1. Seepage was observed at 16.8 m below ground surface. 2. Sand blowup observed at 16.8 m below ground surface. 3. Test hole open to 19.4 m below ground surface upon completion. 4. Test hole backfilled with with auger cuttings after drilling.		- trace cobbles, trace oxidation below 18.3 m	X	S15	72		27
NOTES: 1. Seepage was observed at 16.8 m below ground surface. 2. Sand blowup observed at 16.8 m below ground surface. 3. Test hole open to 19.4 m below ground surface upon completion. 4. Test hole backfilled with with auger cuttings after drilling.	-20		X	S16	30		27
-24		NOTES: 1. Seepage was observed at 16.8 m below ground surface. 2. Sand blowup observed at 16.8 m below ground surface. 3. Test hole open to 19.4 m below ground surface upon completion.				SI Theovery 65%	27
-25	-23						27
	-24						27
26							2
28 29 30	-26						2
29 30	-27						2
30	-28						2
30	29						2
LOGGED BY: Sam Oshati COMPLETION DEPTH: 20.42 m REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/18/13	<u>3U</u>	A=COM				LOGGED BY: Sam Oshati COMPLETION DEPTH: 20.42 m	_

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704829 Northing: 5163258 UTM N 1.5 E			11: C	ty Of S	ault Ste. Ma	arie		TESTHOLE NO: TH13-0. PROJECT NO.: 6011762	
CONT	RAC	TOR: TBT Engineering Consulting Group					ounted CME	750,	HSA 194 mm	ELEVATION (m): 310.50	
SAMF	PLE T	YPE GRAB SHELBY TUBE			T SPC		BULK		✓ NO RECC		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SPT (0 20 16 17	Total Unit Wt (kN/m³) 18 19 2 tic MC Liqu	⇒ Test) ♦ 80 100 I	UNDRAINED SHEAR STREN + Torvane + × QU × □ Lab Vane □ △ Pocket Pen. △ ♣ Field Vane ♣ (kPa) 50 100 150	COMMENTS	i
0	4 4	SAND and GRAVEL - trace organics, trace to some cobbles, trace boulders - brown, compact, moist				20	40 00	50 100	30 100 130	200	3
1	* *	- medium to coarse grained									
2	* * *		X	S17	27		X			SPT 14, 13, 14 blows/150 mm SPT Recovery 33%	3
3	* *	- trace clay to 3.7 m below ground surface	X	S18	19	•				SPT 7, 9, 10 blows/150 mm SPT Recovery 17%	3
4 5	* *	- very dense at 4.8 m below ground surface	X	S19	56		•			SPT 18, 24, 32	3
6	* * *									blows/150 mm SPT Recovery 4%	3
7			X	S20	27	•	>			SPT 9, 12, 15 blows/150 mm SPT Recovery 67%	3
8	* *	- silt lens (76 mm thick), wet, low plasticity	X	S21	16					SPT 6, 7, 9 blows/150 mm SPT Recovery 83%	3
-9											3
10		- moist, fine grained below 9.4 m	X	S22	30					SPT 3, 12, 18 blows/150 mm SPT Recovery 83%	3
11	4	END OF TEST HOLE AT 10.5 m ON SUSPECTED BEDROCK. NOTES: 1. Power auger refusal at 10.5 m below ground surface in SAND									3
12		and GRAVEL.2. No seepage observed upon completion of drilling.3. Test hole open to 10.5 m below ground surface upon completion.									2
13		Test hole backfilled with auger cuttings after drilling.									2
14											2
15						1000	ED DV 2			ADJETION DEDTIL 42.50	2
		A=COM					ED BY: Sam WED BY: Z			MPLETION DEPTH: 10.52 m MPLETION DATE: 6/18/13	
		7-50//					ECT ENGINE			Page	1 /

		Sault St. Marie - Landfill Expa : 16 T Easting: 704869 North					., 0	Sault Ste						ESTHOLE NO: TH13-0 ROJECT NO.: 6011762	
CONT	RAC	ΓOR: TBT Engineering Consu	ulting Group					Mounted (CME 7	750, H	ISA 1	94 mm	ı E	LEVATION (m): 294.50	1
SAMP	LE T	PE GRAB	SHELBY TUBE			T SPO		В					RECOV	ERY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	■ Total Unit (kN/m ³	cone ♦ Pen Tes mm) 0 80 Wt ■) 20 Liquid	t) 🔷	- - - - - - - - - - - - - - - - - - -	D SHEAF Torvane QU > Lab Van Pocket Pe Field Van (kPa)	< ie □ en. △	COMMENTS	O F
0		SAND (Upper) - trace gravel, trace - brown, compact to dense, dry to redium to coarse grained	silt, trace cobble moist												29
-1				X	S24	49								SPT 3, 10, 39 blows/150 mm SPT Recovery 63%	2
-3		- moist, cobbly below 3 m		X	S25	31								SPT 9, 15, 16 blows/150 mm SPT Recovery 25%	29
-4 -5		- fine grained below 4.6 m - Gravel: 6.3%, Sand: 90.4%, Fine	s: 3.3%	X	S26	12	•							SPT 3, 5, 7 blows/150 mm SPT Recovery 75%	2
-6		- dense below 6 m		X	S27	44		**************************************						SPT 6, 15, 29 blows/150 mm SPT Recovery 54%	2
-7 -8	★ ★ ★	SAND and GRAVEL - some cobble - brown, dense, moist - medium to coarse grained	es, trace silt, trace boulders	X	S28	37								SPT 11, 17, 20 blows/150 mm SPT Recovery 92%	2
-9 -10	* * *	- trace oxidation - Gravel: 44.7%, Sand: 46.9%, Fin	es: 8.4%	X	S29	48		*						SPT 12, 25, 23 blows/150 mm SPT Recovery 71%	2
-11	* * * *			X	S30	37								SPT 11, 16, 21 blows/150 mm SPT Recovery 46%	2
-12	* * * *	- very dense below 12 m		X	S31	92	•			•				SPT 23, 47, 45 blows/150 mm SPT Recovery 75%	2
13		SAND (Lower) - trace cobble, trace	e silt		S32	85				>				SPT Recovery 75%	2
15		- brown, very dense, moist - fine to medium grained												blows/150 mm SPT Recovery 100%	2
		A = CO	4				_	GED BY:						PLETION DEPTH: 20.42 m	
		A=CO/	И				RE\	IEMED B	Y: Zey	ad Sh	ukri		COMP	PLETION DATE: 6/18/13	

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704869 Northing: 5163123 UTM N 3.0			IT: C	ity Of Sault Ste. Marie TESTHOLE NO: PROJECT NO.:	
		TOR: TBT Engineering Consulting Group			IUD.	Tire Mounted CME 750, HSA 194 mm	
SAMP		<u> </u>			IT SPC		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	Z
15 -16		- wet, below 15.6 m	X	S33	76	● ◆ SPT 11, 25, 51 blows/150 mm SPT Recovery (53%
-17		- trace oxidation, some gravel, some silt below 16.8 m - Gravel: 19.0%, Sand: 69.1%, Fines: 11.9%	X	S34	31	●◆ SPT 9, 12, 19 b mm SPT Recovery !	
-18		- pinkish brown, very dense, medium grained below 18.3 m	X	S35	76	● SPT 10, 34, 42 blows/150 mm	27
-19 -20		- fine grained sand, trace cobble, trace clay below 18.9 m		7 S36	65	SPT Recovery 9	27
-21		END OF TEST HOLE AT 20.4 m IN SAND. NOTES: 1. Seepage observed at 15.6m below ground surface.		536	65	●	
-22		Sand blowup observed at 16.8 m below ground surface. Test hole open to 19.7 m below ground surface upon completion. Test hole backfilled with auger cuttings after drilling.					27
-23							27
-24							27
-25							2.
-27 -28 -29 -30							26
-27							21
28							20
29							21
30							20 40
		A=COM				LOGGED BY: Sam Oshati COMPLETION DEPTH: REVIEWED BY: Zeyad Shukri COMPLETION DATE:	
		A=COM				PROJECT ENGINEER: Rick Talvitie	Page 2 o

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704709 Northing: 5162845 UTM N 4.6			11: C	y Of Sault Ste. Marie TESTHOLE NO: PROJECT NO.: (
		FOR: TBT Engineering Consulting Group			IUD.	Fire Mounted CME 750, HSA 194 mm ELEVATION (m):	
	LE T				IT SPO		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	
0		SAND and GRAVEL (FILL) - trace organic - brown, loose, dry to moist	1			20 ¹ 40 ⁴ 60 ¹ 80 100 50 100 150 200	
1		- medium to coarse grained MUNICIPAL SOLID WASTE (MSW) - black, wet	_				3
2							3
3							3
4							;
5							;
6				,	07	CDT 42 00 7 bl	:
,				S37	27	SPT 12, 20, 7 bl mm SPT Recovery 5	Ι.
3							,
)							
10							:
11		- trace sand, brown, moist	X	S38	60	SPT 44, 45, 15 blows/150 mm	70/
2						SPT Recovery 1	7%
3							
4		- trace to some sand, trace cobbles, dry below 13.7 m	X	S39	30	◆ SPT 13, 16, 14 blows/150 mm	40/
15						SPT Recovery 2	
		A=COM				LOGGED BY: Sam Oshati COMPLETION DEPTH: REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6	

	Sault St. Marie - Landfill Expansion I: 16 T Easting: 704709 Northing: 5162845 U			NT:	Cit	y Of	Sault S	te. M	arie					STHOLE NO: TH13-0 ROJECT NO.: 6011762	
	TOR: TBT Engineering Consulting Group			HOE	D: T	ire N	/lounted	СМЕ	750	, HS/	194	mm		EVATION (m): 307.70	
SAMPLE T	YPE GRAB SHELE		SP					BULK				NO RE			
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	AAMPI E TYPE	SAMPLE TITE	THE PERSON NAMED IN COLUMN 1	S) 45	◆ SP) 2 16 17	Total Ui (kN/r	er ¥ Cone d Pen 1 00mm) 60 nit Wt In³) 19	≎ est) ♦ 80 100 ■	<u></u>	+ To × 0 □ Lab △ Pock ♣ Field (H	HEAR STR rvane + QU × vane □ tet Pen. △ d Vane � kPa)	s.	COMMENTS	í
-16 -17 -18			S4	0 6	67									SPT 32, 17, 50 blows/150 mm SPT Recovery 43%	2 2 2
-19 -20 -21	- some sand, moist below 19.8 m END OF TEST HOLE AT 20.4 m IN MSW. NOTES: 1. Seepage observed at 1.5 m below surface. 2. Test hole sloughed in with garbage upon completi		S4	1 7	72									SPT 7, 24, 48 blows/150 mm SPT Recovery 58%	2
-22	3														2
-24															2
25															2
26															2
27															2
28															2
29															2
30						IOC	GED BY	Can	n Och				OMDI	: ETION DEPTH: 20.42 m	
	AECOM				}		IEWED							ETION DEPTH: 20.42 m ETION DATE: 6/19/13	
	A=50///				ŀ		JECT E							Page	2 (

SAMPL		TOR: TBT Engineering Cons	ulting Group								OJECT NO.: 6011762	
	LE T	/DE == 05:-		N	1ETH	OD:	Tire M	lounted CME 750			EVATION (m): 279.00	
(m)		YPE GRAB	SHELBY TUBE	\boxtimes	SPL	T SPO	ON	BULK	☑ NO RI	ECOVE	RY CORE	
DЕРТН (m)	SOIL SYMBOL	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	0 20 16 17	■ Total Unit Wt ■ (kN/m³) 18 19 20 2 astic MC Liquid	□ Lab Vane □ □ △ Pocket Pen. ♣ Field Vane ♠ (kPa)	D	COMMENTS	i
0		SAND (Lower) - trace gravel, trace	e silt, trace cobble				20	40 00 00 10	30 100	150 200		
1		- brown, loose to dense, moist - fine to medium grained										2
2		- moist to dry, trace cobble below	2.0 m	X	S42	4	•				SPT 2, 2, 2 blows/150 mm SPT Recovery 21%	2
3				X	S43	98					SPT 16, 50, 48 blows/150 mm	2
4		- pinkish brown, dense to very der	ise moist fine arained below								SPT Recovery 25%	1
5		4.6 m	iso, most, into granted bolow	X	S44	57			3		SPT 9, 23, 34 blows/150 mm SPT Recovery 86%	2
7				X	S45	44		♦			SPT 5, 20, 24 blows/150 mm SPT Recovery 96%	2
8				X	S46	53	•	•			SPT 7, 25, 28 blows/150 mm SPT Recovery 100%	
9					S47	36					SPT 8, 15, 21 blows/150	:
10		- wet, medium to coarse grained b	pelow 9.6 m		041	30					mm SPT Recovery 100%	2
11		- fine grained, trace oxidation		X	S48	38)			SPT 5, 15, 23 blows/150 mm SPT Recovery 79%	2
												1
13												:
		- very dense below 14 m			S49	105		>> +			SPT 30, 54, 51 blows/150 mm SPT Recovery 100%	:
15							LOG	GED BY: Sam Osh	nati (COMPLI	ETION DEPTH: 20.12 m	L
		A=CO/	М					EWED BY: Zeyad			ETION DEF 111. 20.12 111 ETION DATE: 6/19/13	

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704486 Northing: 5162490 UTM N 6.1			NT: C	ity	Of Sault Ste. Marie		ESTHOLE NO: TH13-0	
		TOR: TBT Engineering Consulting Group			10D:	T:	o Mounted CME 750 LICA 404		ROJECT NO.: 601176	
	LE T		I V	<u>'ILT</u> SPI	<u>HOD:</u> .IT SPC	HIL NOC	e Mounted CME 750, HSA 194	I mm	LEVATION (m): 279.00 ERY TOORE	J
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	•	PENETRATION TESTS # Becker #	SHEAR STRENGT forvane + ⟨QU × ab Vane □ cket Pen. △ eld Vane ♣ (kPa)		i
15							20 40 60 80 100 50	100 150 2	200 · · · · · · · · ·	
16					60/					2
17		- silty, trace clay below 17.0 m - Gravel: 0.0%, Sand: 56.8%, Fines: 43.2%	X	S50	60/ 102mr	n	**		SPT 33, 60 blows/150 mm SPT Recovery 100%	2
18										2
19					741					2
20		END OF TEST HOLE AT 20.1 m IN SAND. NOTES:		S51	71/ 102mr	n			SPT 40, 71 blows/150 mm SPT Recovery 100%	2
21		Seepage observed at 9.6m below ground surface. Sand blowup observed at 13.7 m below ground surface. Test hole open to 18.6 m below ground surface upon completion. Test hole backfilled with auger cuttings after drilling.								2
22		T. 1050 Hore backfilled with auger cuttings after untilling.								2
23										2
24										2
25										2
26										2
27										2
28										2
29										2
30						1	OCCED DV: Sam Ochati	COMP		\perp
		A=COM					OGGED BY: Sam Oshati EVIEWED BY: Zeyad Shukri		PLETION DEPTH: 20.12 m PLETION DATE: 6/19/13	1
							ROJECT ENGINEER: Rick Talviti		Page	2

		Sault St. Marie - Landfill Expansion			IT: C	ty Of Sault Ste. Marie		OLE NO: TH13-00	
		 16 T Easting: 5163073 Northing: 704604 UTM N 7.6 E FOR: TBT Engineering Consulting Group 			IOD.	Fire Manusted CME 750 LICA		OT NO.: 6011762	
	LE T				IOD: IT SPO	Fire Mounted CME 750, HSA ON ⊟BULK	NO RECOVERY	TON (m): 309.50	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	INED SHEAR STRENGTH + Torvane + × QU ×	COMMENTS	EI EVATION
0 -1 -2	***	TOPSOIL - rootlets, some sand, some gravel, trace cobble dark brown to brown, loose, moist SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, very dense, moist - medium to coarse grained - moist to wet below 1.8 m	√	S52 S53	50/ 102mm	20 % % % % % % % % % % % % % % % % % % %	SPT	50 blows/102 mm Recovery 25%	30
3	* * * * *	- cobbly below 3.0 m	><	S54	50/ 76mm	● ≫•		50 blows/76 mm Recovery 17%	30
4 5	•	END OF TEST HOLE AT 5.2 m IN SAND and GRAVEL.		S55 G56	52/ 102mm	→	, mm	10, 52 blows/150 Recovery 82%	30
6		NOTES: 1. Power auger refusal at 5.2 m below ground surface in SAND and GRAVEL. 2. No seepage was observed during drilling. 3. Test hole open to 3.6 m below ground surface upon completion. 4. Test hole backfilled with auger cuttings after drilling.							30
8		G G G.							30
9									3
10									3
11									2
12									2
13									2
14									2
15							2 · · · · · · · 2 · · · · · · · · 2 ·		2
<u>15</u>		A=COM				LOGGED BY: Sam Oshati REVIEWED BY: Zeyad Shukri		N DEPTH: 5.18 m N DATE: 6/20/13	

			t St. Marie - Landfill Expansi				T: Ci	ty O	f Sault Ste. Marie	!	TE	STHOLE NO: TH13-0	7
			Γ Easting: 704240 Northing:		.1 E 0.3						PR	ROJECT NO.: 6011762	27
			TBT Engineering Consulting	•					Mounted CME 75			EVATION (m): 281.40	
SAMP			GRAB	SHELBY TUBE		•	T SPO	ON	BULK		RECOVE		
BACK	FILL	TYPE	BENTONITE	GRAVEL	Щ	SLO	UGH		GROUT	∠_Cl	JTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SF 0 : 16 1	PENETRATION TESTS # Becker # Opnamic Cone ♦ PT (Standard Pen Test) (Blows/300mm) 20 40 60 80 1 # Total Unit Wt # Total Unit Wt # (kN/m³) 7 18 19 20 Plastic MC Liquid 20 40 60 80 1	□ Lab Var △ Pocket P ♣ Field Va (kPa)	e + < ne □ en. △	COMMENTS	ELEVATION
0	4 4		SAND and GRAVEL - some cobl - brown, very dense, moist	bles, trace silt									281 -
-1 -1 2	* * * * *		- medium to coarse grained - Gravel: 48.5%, Sand: 43.1%, F	Fines: 8.4%	X	S57	95	•		•		SPT 13, 45, 50 blows/150 mm SPT Recovery 100%	280 - 279 -
3 4	* *				×	S58	50/ 76mm			**		SPT 25, 50 blows/150 mm SPT Recovery 100%	278 -
5	1		SAND (Lower) - trace to some si - brown, very dense, moist - fine grained	lt, trace gravel		S59	52/ 102mm			× ♦		SPT 28, 52 blows/150 mm SPT Recovery 100%	277 - 276 -
-6 7						S60	76	•	•			SPT 12, 30, 46 blows/150 mm SPT Recovery 96%	275
- - 8 - - -			- pinkish brown, fine to medium (grained below 7.6 m		S61	66					SPT 13, 30, 36 blows/150 mm SPT Recovery 96%	274
10					X	S62	69	•				SPT 12, 29, 40 blows/150 mm SPT Recovery 86%	272 -
IA WINN.GDT 4/18/7			- dense below 10.7 m			S63	42	•				SPT 10, 19, 23 blows/150 mm SPT Recovery 92%	271 -
MD 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13						S64	40	•				SPT 8, 19, 21 blows/150 mm SPT Recovery 86%	269 ⁻
LOG OF TEST HOLE. TH LOGS-SSM FINAL:GPU UMA WINN.GDT 4/18/14													268 · 267 ·
15	<u> </u>							LO	GGED BY: Sam Os	shati	COMPI	ETION DEPTH: 24.99 m	
ģ			A=COM						/IEWED BY: Zeyad			ETION DATE: 6/21/13	
5									DJECT ENGINEER				1 of 2

CONTRACTOR: TBIT Engineering Consulting Group METHOD: The Mounted CME 750, HSA 194 mm ELEVATION SAMPLE TYPE Service	NO: TH13-07	TESTHOLE NO		e. Marie	Of Sault Ste	IT: City				t St. Marie - Landfill Expansio			
SAMPLE TYPE BRACKFILL TYPE BENTONTE GRAVEL GROUT COMMUNICATIONS SOIL DESCRIPTION SOIL DESCRIPTI	IO.: 60117627	PROJECT NO.:						0.1 E 0.3	•				
SOIL DESCRIPTION SOIL DESCRI		ELEVATION (m							<u> </u>				
Company Comp	CORE												-
Solid Description Soli	SAND	TINGS SA	CUTTING	GROUT	GI	UGH	SLO	Щ	GRAVEL	BENTONITE	TYPE	FILL	BACK
- trace to some cobbles, very dense at 15.4 m - 16 - 17 - 18 - dense, wet, medium to coarse grained below 18.3 m - dense, wet, medium to coarse grained below 18.3 m - 19 - 20 - 21 - 19 - fine to medium grained below 21.3 m - 22 - 23 - 24 - 25 - Gravet: 0.1%, Sand: 86.6%, Fines: 13.3% - S85 - 577 - 76mm - S87 - 76mm - S87 - 76mm - S87 - S87 - S87 - S87 - S87 - S87 - S88	ST/AMM/N	COMME	+ Torvane +	er ★ Cone ♦ Pen Test) ◆ 0mm) 60 80 100 tt Wt ■ 3 1 9 20 2	# Becker Dynamic C SPT (Standard F (Blows/300) 0 40 6 Total Unit (kN/m³) 17 18 19 Plastic MC	SPT (N	SAMPLE #	SAMPLE TYPE	SCRIPTION	SOIL DESCI	WELL INSTALLATION	SOIL SYMBOL	DEPTH (m)
- dense, wet, medium to coarse grained below 18.3 m SPT 8, 18, mm SPT Recov -20 -21 -fine to medium grained below 21.3 m S67 44 -fine to medium grained below 21.3 m SPT Recov -22 -23 -24 - Gravel: 0.1%, Sand: 86.6%, Fines: 13.3% S68 43 - SPT 12, 20 -		SPT 19, 57 blo mm SPT Recovery					S65	×	y dense at 15.4 m	- trace to some cobbles, very der			
- dense, wet, medium to coarse grained below 18.3 m Second 19 - dense, wet, medium to coarse grained below 18.3 m Second 19 - fine to medium grained below 21.3 m Second 19 Second 19	265												17
-19 SPT Recov -20 -21 -5 ine to medium grained below 21.3 m SFT 6, 16, mm SPT 867 44	264						,		ures around holow 18.3 m	donso wat madium to coarso			18
-21	, 21 DIOWS/150	SPT 8, 18, 21 mm SPT Recovery				39	S66	X	ise grained below 16.5 III	- dense, wet, medium to coarse (19
- fine to medium grained below 21.3 m SPT 6, 16, mm SPT Recov SPT Recov SPT 12, 20 blows/150 is SPT Recov	261												
E-24 -Gravel: 0.1%, Sand: 86.6%, Fines: 13.3% S68 43 ★ SPT 12, 20 blows/150 is SPT Recovery 150 is S	·	SPT 6, 16, 28 mm SPT Recovery			•	44	S67	X	ow 21.3 m	- fine to medium grained below 2	-		
- Gravel: 0.1%, Sand: 86.6%, Fines: 13.3%	259										-		23
- 57 avei. 0.1%, Sarid. 06.0%, Filles. 15.5% blows/150 i	257	207 40 00 00									-		-24
END OF TEST HOLE AT 25 m IN SAND. NOTES: 1. Seepage observed at 18.3 m below ground surface. 2. Sand blowup observed at 21.3 m below ground surface. 3. Installed 25 mm diameter monitoring well (MW13-01) with 4.6 m screen from 21 to 25.6 m below ground surface and 0.8 m stick-up. 4. Above ground protective casing installed. 5. Test hole blown-up with native sand to 17.7 m, backfilled with well gravel to 17.4 m, sealed with bentonite to 14 m followed by auger cuttings to 7.9 m, then sealed to 7.3 m followed by auger cuttings to 2.7 m, sealed to 0.10 m and concreted to ground surface. 6. Ground water monitoring: - June 22, 2013 at 18.34 m (Elev. 263.7)) mm	blows/150 mm SPT Recovery				43	S68	X	5, Fines: 13.3%	- Gravel: 0.1%, Sand: 86.6%, Fir	-		Г
3. Installed 25 mm diameter monitoring well (MW13-01) with 4.6 m screen from 21 to 25.6 m below ground surface and 0.8 m stick-up. 4. Above ground protective casing installed. 5. Test hole blown-up with native sand to 17.7 m, backfilled with well gravel to 17.4 m, sealed with bentonite to 14 m followed by auger cuttings to 7.9 m, then sealed to 7.3 m followed by auger cuttings to 2.7 m, sealed to 0.10 m and concreted to ground surface. 6. Ground water monitoring: - June 22, 2013 at 18.34 m (Elev. 263.7)	255							ice.	3 m below ground surface.	NOTES: 1. Seepage observed at 18.3 m l	<u> </u>		26
backfilled with well gravel to 17.4 m, sealed with bentonite to 14 m followed by auger cuttings to 7.9 m, then sealed to 7.3 m followed by auger cuttings to 2.7 m, sealed to 0.10 m and concreted to ground surface. 6. Ground water monitoring: - June 22, 2013 at 18.34 m (Elev. 263.7)	254) ace	monitoring well (MW13-01) 25.6 m below ground surface casing installed. ative sand to 17.7 m,	Installed 25 mm diameter mon with 4.6 m screen from 21 to 25.0 and 0.8 m stick-up. Above ground protective casin 5. Test hole blown-up with native			27 27 25 25 27 27
FF	253							d to	uttings to 7.9 m, then sealed to ings to 2.7 m, sealed to 0.10 surface. m (Elev. 263.7)	to 14 m followed by auger cutting 7.3 m followed by auger cuttings m and concreted to ground surfa 6. Ground water monitoring: - June 22, 2013 at 18.34 m (El			28
- June 23, 2013 at 18.33 m (Elev. 263.7) - June 25, 2013 at 17.47 m (Elev. 264.5)	252			· · · · · · · · · · · · · · · · · · ·					m (Elev. 263.7) m (Elev. 264.5)	- June 23, 2013 at 18.33 m (El - June 25, 2013 at 17.47 m (El			30
LOGGED BY: Sam Oshati COMPLETION DEF REVIEWED BY: Zeyad Shukri COMPLETION DAT		COMPLETION DEPTH COMPLETION DATE:				_			A				=
PROJECT ENGINEER: Rick Talvitie	Page 2 of	CONTRACTION DATE.							71	A=COM			ž

			St. Marie - Landfill Expa				IT: Ci	ty Of Sault Ste. Marie		TE	STHOLE NO: TH13-0	8
			Easting: 704086 Northi								OJECT NO.: 6011762	
			TBT Engineering Consu	_ '				Tire Mounted CME 750			EVATION (m): 291.70	1
SAME			GRAB	SHELBY TUBE		•	T SPO		NO F			
BACK	FILL	IYPE	BENTONITE	GRAVEL	Ш	SLO	UGH	GROUT	Сит		SAND	
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	⊕ Field Vane (kPa)	+ □ . △	COMMENTS	ELEVATION
= 0	2222		TOPSOIL - rootlets, some some some some some some some some	and, some gravel, trace	Г							=
<u>-</u> 1			- dark brown, moist SAND (Upper) - trace gravel - brown, compact, moist - medium to coarse grained						3			291
2						S69	13				SPT 2, 6, 7 blows/150 mm SPT Recovery 63%	290 -
=-3 =			SAND and GRAVEL - some - brown, dense to very dense - medium to coarse grained			S70	50/ 76mm	>>			SPT 13, 50 blows/150 mm SPT Recovery 44%	288
-5			SAND (Seam) - trace silt - brown, very dense, moist - fine to medium grained - trace oxidation - Gravel: 0.0%, Sand: 90.3%			S71	80	•			SPT 16, 30, 50 blows/150 mm SPT Recovery 82%	287 –
<u>-</u> 6			SAND and GRAVEL - some boulders - brown, very dense, moist - medium to coarse grained	cobbles, trace silt, trace		S72	52/ 102mm	>><			SPT 33, 52 blows/150 mm SPT Recovery 100%	286 – 285 –
-7 - - - - - 8	• •				*	S73	50/ 102mm	≫4			SPT 50 blows/102 mm SPT Recovery 100%	284 –
9	* *		- coarse grained below 9.1 r	n		S74	66				SPT 19, 32, 34	283
10	4 4										blows/150 mm SPT Recovery 92%	282
WINN.GDT 4/:	4 4				X	S75	79	•			SPT 23, 37, 42 blows/150 mm SPT Recovery 92%	281
LOG OF TEST HOLE TH LOGS-SSM FINAL. GPJ UMA WINN, GDT 4/18/14 12			SAND (Lower) - trace gravel - pinkish brown, dense, mois - fine to medium grained			S76	38	•			SPT 12, 19, 19 blows/150 mm SPT Recovery 86%	280 –
TH LOGS-SSM 14			s toosidiii grainou								,	278 -
ST HOLE								LOCOED DV 2	-4:	00125	ETION DEPTH 22.52	277
OF TE			A=COM	A				LOGGED BY: Sam Osh REVIEWED BY: Zeyad			ETION DEPTH: 33.53 m ETION DATE: 6/22/13	
- FOG			ALCOM	7 .				PROJECT ENGINEER:		JOIVII L		1 of 3

		t St. Marie - Landfill Expar				IT: C	ty O	Sault Ste. Marie		TE	STHOLE NO: TH13-0	8
		T Easting: 704086 Northin	•								OJECT NO.: 6011762	
		TBT Engineering Consult	<u> </u>					Mounted CME 750			EVATION (m): 291.70	
SAME	TYPE	GRAB BENTONITE	SHELBY TUBE GRAVEL		JSPL ∏SLO	IT SPO	ON	BULK GROUT	CUT	RECOVE	RY CORE SAND	
DEPTH (m)	WELL			SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	PENETRATION TESTS	UNDRAINED SHEAR + Torvane × QU × □ Lab Vane 0 △ Pocket Pei 0 Field Vani 1 (kPa)	STRENGTH + ⊕ □ n. △ e •	COMMENTS	ELEVATION
-16 17 18		- very dense below 15 m			S77	55			0 50 100	150 200	SPT 13, 26, 29 blows/150 mm SPT Recovery 86%	276 - 275 - 274 -
-19 -20 -21		- trace cobble below 18.6 m			S78	49					SPT 8, 19, 30 blows/150 mm SPT Recovery 92%	273 - 272 - 271 -
-22 -23 -24		- trace to some gravel, coarse m	e grained, brown below 21.3		S79	99					SPT 22, 48, 51 blows/150 mm SPT Recovery 100%	270 - 269 - 268 -
25		- fine to medium grained belo	w 24.4 m									267 -
27		- dense below 25.9 m		X	S80	35					SPT 10, 17, 18 blows/150 mm SPT Recovery 96%	265 -
LOG OF TEST HOLE TH LOGS-SSM FINAL.GPJ UMA WINN GDT 4/18/14 87												264 - 263 - 262 -
30											ETION DESTRUCTION	
片		A=CON	4				_	GGED BY: Sam Osh /IEWED BY: Zeyad			ETION DEPTH: 33.53 m ETION DATE: 6/22/13	
90		A=CON	•					DJECT ENGINEER:		OOWI L		2 of 3

PROJ	ECT:	Sault	St. Marie - Landfi	l Expansio	on	С	LIEN	IT: Ci	ty O	Sault Ste. Mar	rie		TE	STHOLE NO: TH13-0	8
					5162515 UTM N 10.7	Έ 0.	3							OJECT NO.: 6011762	
			TBT Engineering	Consulting	<u> </u>					Mounted CME	750, I			EVATION (m): 291.70	
SAMF			GRAB		SHELBY TUBE		-	T SPO	ON	BULK			RECOVE		
BACK	FILL	TYPE	BENTON	ITE	GRAVEL	Щ	SLO	UGH		GROUT	Г	Cn	TTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL	DESCF	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SF 0 2 16 1	Total Unit Wt ■ (kN/m³) 7 18 19 20 Plastic MC Liquid	o 100 0 100 0 21	INDRAINED SHEAR + Torvane × QU × □ Lab Vane △ Pocket Pe ♣ Field Van (kPa) 50 100	+ : e □ n. △	COMMENTS	ELEVATION
= 30 = 31 = 32			- trace gravel, very d	ense, wet			S81	69						SPT 9, 27, 42 blows/150 mm SPT Recovery 92%	261 -
-33 -33 			END OF TEST HOLINOTES:												259 – 258 –
34 			Installed 25 mm m	nonitoring we 33.5 m below	elow ground surface. m below ground surface. II (MW13-02) with 3.0 m ground surface and 0.90 g installed.										257 –
- - -36			5. Test hole blown-u backfilled with well g to 28.8 m followed b sealed with bentonite	o with native ravel to 29.7 y auger cuttil e to 17.7 m fo	sand to 33.2 m, m, sealed with bentonite										256 -
37			cuttings to 1.1 m, the concreted to ground 6. Ground water mor - June 22, 2013 at - June 25, 2013 at	surface. nitoring: : 29.68 m (El	h bentonite to 0.10 m and ev. 261.3) ev. 262.9)										255 - 254 -
-38 -39															253 -
40															252 -
/INN.GDT 4/18/															251 -
WE.GPJ 47															250 -
43 43															249 -
1.06 OF TEST HOLE TH LOGS-SSM FINAL GPJ UMA WINN GDT 4/18/14															247 -
E L			A = C	<u> </u>					_	GGED BY: Sam				ETION DEPTH: 33.53 m	
Ö			A=C	UM						/IEWED BY: Zey			COMPL	ETION DATE: 6/22/13	2 - (2
۲I		AECOM							KK(DJECT ENGINEE	⊏K: KI	ick i alvitie	1	Page	3 of 3

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704174 Northing: 5162703 UTM N 12.3				., 0	f Sault Ste. Marie		TESTHOLE NO: TH13-0 PROJECT NO.: 6011762	
CONT	RAC	TOR: TBT Engineering Consulting Group	N	1ETH	IOD:	Tire	Mounted CME 750, I		ELEVATION (m): 293.50	
SAMF	LE T	YPE GRAB SHELBY TUBE	\geq	SPL	IT SPC	ON	BULK	✓ NO RECO		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SI 0	# Becker # ◇ Dynamic Cone ◇ PT (Standard Pen Test) ◆ (Blows/300mm) 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m³)	NDRAINED SHEAR STREN + Torvane +	COMMENTS	i i
0	2222	$_{ m 7}$ TOPSOIL - rootlets, some sand, some gravel, trace cobble, trace	7				20 40 00 00 100	30 100 130		
		∖clay ∖- dark brown to brown, moist	\prod							2
-1		SAND (Upper) - some gravel, trace silt - brown, compact, moist - medium to coarse grained								2
		- Gravel: 13.1%, Sand: 82.6%, Fines: 4.3%	X	S82	22	•:	*		SPT 3, 11, 11 blows/150	-
-2									mm SPT Recovery 71%	2
-3	1	SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, compact to dense, moist		,						
	4. 1.	- medium to coarse grained	X	S83	47				SPT 6, 18, 29 blows/150	2
	• •								SPT Recovery 43%	1
4	4									
		SAND (Lower) - trace gravel, trace silt								2
_		- pinkish brown, dense, moist - fine to medium grained	X	S84	48	•:			SPT 10, 19, 29	
5		C							blows/150 mm SPT Recovery 75%	
										2
-6										
•			\times	S85	58		•		SPT 19, 23, 35	
		- trace gravel, trace cobble, very dense below 6.4 m		3					blows/150 mm	2
7									SPT Recovery 83%	
										2
			\bigvee	S86	68		<u></u>		SPT 66, 34, 34	
-8				3					blows/150 mm	
							÷ · · · · † · · · · · † · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · † · · · · · · † · · · · · · † · · · · · · · † · · · · · · · † · · · · · · · † · · · · · · · † · · · · · · · † · · · · · · · † · · · · · · · † ·		SPT Recovery 85%	2
-9										
9				S87	55				SPT 30, 25, 30	
			\triangle	3					blows/150 mm	2
-10									SPT Recovery 83%	
										2
				000	64				CDT 12 26 20	'
11			\triangle	S88	04		· · · · · · · · · · · · · · · · · · ·		SPT 13, 26, 38 blows/150 mm	
									SPT Recovery 92%	2
-12										
14										
										2
13										
										_
		- some gravel, medium to coarse grained and below 12.7	\times	S89	51/				SPT 4/1 51 blows/150	2
-14		- some gravel, medium to coarse grained sand below 13.7 m		369	76mm				SPT 44, 51 blows/150 mm	
									SPT Recovery 89%	2
15										'
,,,	1		<u> </u>			LO	GGED BY: Sam Oshat	i CON	MPLETION DEPTH: 27.99 m	_
		A ECOM					VIEWED BY: Zeyad Sh		MPLETION DATE: 6/23/13	

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704174 Northing: 5162703 UTM N 12.2			IT: Ci		HOLE NO: TH13-09 ECT NO.: 60117627
		FOR: TBT Engineering Consulting Group					ATION (m): 293.50
SAMP	LE T	YPE GRAB SHELBY TUBE	\geq	SPL	T SPO	■ BULK NO RECOVERY	CORE
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS # Becker # < Dynamic Cone ♦ SPT (Standard Pen Test) ◆ (Blows/300mm) 20	COMMENTS
15 -16							27
-17			\times	S90	51/ 127mm		T 51 blows/127 mm T Recovery 100%
-18							27
-19							27
20			\times	S91	53/ 127mm		T 53 blows/127 mm T Recovery 100%
21							2
22							2
23							2
24		fine arrained below 24.4 m		S92	51/	» ♦ \$₽	
-25		- fine grained below 24.4 m		032	76mm	mr	T 33, 51 blows/150 2l T Recovery 100%
26							2
226 227 228 229 30		- silty, some gravel, greyish brown, moist below 27.4 m					2
28		END OF TEST HOLE AT 28 m ON SUSPECTED BEDROCK. NOTES:	×	S93	53/ 102mm		T 53 blows/102 mm T Recovery 63%
29		 Power auger refusal at 28 m below ground surface in SAND. No seepage observed during drilling. Test hole open to 17.1 m below ground surface upon completion. 					
30		Test hole backfilled with auger cuttings after drilling.					2
		A=CO44					ON DEPTH: 27.99 m
		A=COM				EVIEWED BY: Zeyad Shukri COMPLETIC ROJECT ENGINEER: Rick Talvitie	ON DATE: 6/23/13 Page 2 o

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704292 Northing: 5162874 UTM N 13.7			IT: Ci	ty Of	Sault	Ste.	<u>Marie</u>					ESTHOLE NO: TH13- 1 ROJECT NO.: 601176	
		FOR: TBT Engineering Consulting Group			OD∙ .	Tiro M	lounta	74 CI	./⊑ 75	:n ⊔	<u>ΩΛ 1</u>	94 mm		LEVATION (m): 302.00	
	LE T				T SPO			BUL		, , I			RECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	ш	SAMPLE #	SPT (N)	PE	X Be Dynan (Stand (Blows 40 ■ Total	TION T ecker ¾ nic Cor ard Pe /300m 60 Unit W √/m³)	ESTS ie in Test) in Test) in 80 1	•	_ _ _ _		STRENGTH + - □ n. △		i i
0	3333	TOPSOIL - rootlets, some sand, some gravel, trace cobble, trace				20	40	60	80 1	100	50	100	150 20	00	
1		clay - dark brown to brown, moist, soft SAND (Upper) - trace gravel, trace silt - brown, compact, moist - medium to coarse grained													3
2		SAND and GRAVEL - some cobbles	7												3
3		- greyish brown, dense, moist - medium to coarse grained END OF TEST HOLE AT 2.47 m IN SAND and GRAVEL. NOTES:													2
4		Power auger refusal at 2.5 m below ground surface in SAND and GRAVEL. No seepage observed during drilling. Test hole open to 2.5 m below ground surface upon													2
5		completion. 4. Test hole backfilled with auger cuttings after drilling.													2
ô															2
7															2
3															2
9															2
10															2
11															2
12															2
13 14															2
14															2
15						100	2ED 1	2V· Ω	am Os	hoti			COMP	LETION DEPTH: 2.47 m	
		A = COM							Zeya		ıkri			LETION DEPTH: 2.47 m LETION DATE: 6/23/13	

		Sault St. Marie - Landfill Expansion 16 T Easting: 704292 Northing: 5162874 UTM N 15.2			NT: C	ty Of Sa	ult Ste. M	Marie			STHOLE NO: TH13-1 ROJECT NO.: 6011762	
		TOR: TBT Engineering Consulting Group			IUD.	Tiro Mou	ntod CM	IE 750	HSA 194 mm		.EVATION (m): 302.00	
	PLE T				IT SPC				<u>⊓SA 194 IIIII</u> ✓NO R			
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENE \$ Dy \$ SPT (St (BI) 0 20 ■ T	RATION TES EBecker # namic Cone andard Pen bws/300mm 40 60 btal Unit Wt (kN/m³)	STS (UNDRAINED SHEAR ST + Torvane + × QU × □ Lab Vane □ Δ Pocket Pen. (kPa)	FRENGTH		i
						l L	MC Li	quid 80 100		150 20	0	
0	333	TOPSOIL - rootlets, some sand, some gravel, trace cobble, trace										
1		- dark brown to brown, moist, soft SAND (Upper) - trace gravel, trace silt - brown, compact, moist - medium to coarse grained										3
2	7	SAND and GRAVEL - some cobbles, trace silt	X	S94	23	•					SPT 2, 9, 14 blows/150 mm SPT Recovery 71%	3
3	* *	- greyish brown, dense, moist - medium to coarse grained	\times	S95	51/ 102mn	1		» -	.		SPT 30, 51 blows/150 mm SPT Recovery 0%	2
4		- pinkish brown below 4.3 m - silty, fine grained sand, low plasticity, moist to wet below 4.6 m	X	S96	61		•				SPT 7, 11, 50 blows/150	2
5 6	.4*	END OF TEST HOLE AT 5.2 m ON SUSPECTED BEDROCK. NOTES: 1. Power auger refusal at 5.2 m below ground surface in SAND and GRAVEL. 2. Seepage observed at 4.6 m below ground surface.									mm SPT Recovery 67%	2
7		3. Test hole open to 4.6 m below ground surface upon completion.4. Test hole backfilled with auger cuttings after drilling.										2
8												2
9												2
10 11												2
12												2
13												2
14												2
15										-3		
		A=COM					D BY: Sa				LETION DEPTH: 5.18 m LETION DATE: 6/23/13	
		AECOM					/ED BY: 2		Rick Talvitie	JOIVIPL	Page	1

PROJ	ECT:	Sault	St. Marie - Landfill E	xpansion		С	LIEN	IT: C	ity O	f Sault Ste.	Marie			TES	STHOLE NO: TH13-1	IOC
			Easting: 704292 No			E 0.	.3							PRO	DJECT NO.: 6011762	27
			TBT Engineering Co		•					Mounted CN					EVATION (m): 302.00)
SAMF			GRAB		SHELBY TUBE			IT SPC	ON	BUL			NO RE			
BACK	FILL	TYPE	BENTONITE	<u> </u>	GRAVEL	Щ	SLO	UGH		GR	OUT		CUTTI	INGS	SAND	
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION		ESCRIP		SAMPLE TYPE	SAMPLE#	SPT (N)	◆ Si 0	# Becker #	€ ne	> □ La △ Poi ⊕ Fia	Torvane + ⟨ QU × ab Vane □ cket Pen. ∠ eld Vane ❤ (kPa)	Ι Δ	COMMENTS	ELEVATION
0			TOPSOIL - rootlets, sor	ne sand, some	gravel, trace	7										
-1 2			- dark brown to brown, s SAND - trace gravel, tra - brown, compact, mois - medium to coarse grain	ce silt												301 -
- 3			SAND and GRAVEL - s - greyish brown, dense, - medium to coarse grain	moist	race silt											299 -
-4			- silty, fine grained sand moist to wet below 3.7 i	, pinkish brown n	, low plasticity,											298 -
5		<u>. 恒. '</u>	END OF TEST HOLE A BEDROCK. NOTES: 1. Power auger refusal				G97									297 -
6			SAND and GRAVEL. 2. Seepage observed at 3. Installed 25 mm diam with 3.0 m screen from	4.6 m below greater monitoring	round surface. well (MW13-03)											296 -
-7 8			and 0.85 m stick-up. 4. Above ground protec 5. Test hole backfilled v with bentonite to 0.10 n 6. Ground water monito	vith well gravel to and concreted	to 1.5 m, sealed											295 -
9			- June 23, 2013 at 4. - June 25, 2013 at 3.	03 m (Elev. 299 65 m (Elev. 298) .4)											293
-10																292 -
LOG OF TEST HOLE TH LOGS-SSM FINAL:GPU UMA WINN, GDT 4/18/14																291 -
MANU CRD 12																290 -
MI - 13 																289
01H 14 																288
<u> </u>							1	1	LO	GGED BY: S	Sam Osh	ati	С	OMPLE	TION DEPTH: 4.97 m	1
<u>٩</u>			A=CC	M					RE	VIEWED BY:	Zeyad S	Shukri	С		TION DATE: 6/23/13	
ŏ								PR	OJECT ENGI	NEER:	Rick Talviti	е		Page	1 of 1	

PROJECT:	Sault St. Marie - Landfill Expansion	С	LIEN	T: Ci	ty Of Sault Ste. Marie	TESTHOLE NO: TH13-11A
	: 16 T Easting: 704586 Northing: 5162868 UTM N 1	8.3 E 0.	3			PROJECT NO.: 60117627
	TOR: TBT Engineering Consulting Group				Tire Mounted CME 750, HSA 194 mm	ELEVATION (m): 293.60
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N) LdS	ON ■ BULK	COMMENTS NO LEAN
1 -1 -2	MUNICIPAL SOLID WASTE (MSW) - black, wet					293 –
3						291 –
-4						290 -
-6	END OF TEST HOLE AT 6.1 m IN MSW. NOTES:					288 -
7	Seepage observed at 2.4 m below ground surface. Test hole sloughed in with garbage upon completion and sealed with betonite at ground surface.					287 -
-8 						285 –
10 -10						284
100 HOS IN MIN CAD THE STATE OF						282 –
POSSIN FINANCE						281 –
14						280 -
	AECOM	-	I		LOGGED BY: Sam Oshati REVIEWED BY: Zeyad Shukri PROJECT ENGINEER: Rick Talvitie	COMPLETION DEPTH: 6.10 m COMPLETION DATE: 6/23/13 Page 1 of 1

			St. Marie - Landfil					T: Ci	ty Of	Sault Ste	. Marie			TE	STHOLE NO: TH13-1	1B
					5162870 UTM N 19	.8 E 0.	3							PR	OJECT NO.: 6011762	27
			TBT Engineering	Consultin	<u> </u>), HSA 19			EVATION (m): 293.60)
SAMF			GRAB		SHELBY TUBE		•	T SPO	ON	В				RECOVE		
BACK	FILL	TYPE	BENTON	ITE	GRAVEL	Ш	SLO	JGH		[]G	ROUT	<u> </u>		TTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL	DESC	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SP 0 2 16 1;	■ Total Unit (kN/m³	# Sone	D L Po D Po D Fi	SHEAR Forvane CQU ab Vane cket Per eld Vane (kPa)	+ e □ n. △	COMMENTS	ELEVATION
0			MUNICIPAL SOLID - black, moist to wet	WASTE (M	SW) - trace sand											293
-2			- trace cobbles at 0.9) m												292
3																291 -
<u>-</u> 4			- wet below 3.7 m													290 - 289 -
5																288 -
-6 - - -7																287 -
- - - - 8																286 -
9																285 -
-10 -10			- trace sand at 9.4 m			X	S97	32		•					SPT 7, 21, 11 blows/150 mm SPT Recovery 17%	284 -
AN.GDT 4/18/																283 -
12 MA WIN							S98	18							SPT 10, 8, 10 blows/150	282 -
SSM FINAL.							J30	10							mm SPT Recovery 17%	281 -
LOG OF TEST HOLE TH LOGS-SSM FINAL.GPJ UMA WINN.GDT 4/18/14 THE																280 -
로 15												1				279 -
TES	IXXX		4 = 6	<u> </u>		ı				GED BY:					ETION DEPTH: 24.99 m	
G OF			A=C	OM					REV	IEMED B	Y: Zeyad	Shukri			ETION DATE: 6/24/13	
Ý.									PRC	JECT EN	GINEER:	Rick Talvit	ie		Page	1 of 2

			St. Marie - Landfill					IT: Ci	ty Of Sault Ste. Marie	!	TE	STHOLE NO: TH13-1	1B
					5162870 UTM N 19.8							ROJECT NO.: 6011762	
			TBT Engineering (Consulting	<u> </u>				Tire Mounted CME 75			EVATION (m): 293.60	
SAMF			GRAB		SHELBY TUBE		_	IT SPO			RECOVE		
BACK	FILL	TYPE	BENTONI	TE	GRAVEL	Щ	SLO	UGH	GROUT	CUT		SAND	
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL	DESCF	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	□ Lab Vane △ Pocket Per ♣ Field Vane (kPa)	+ n. \(\D	COMMENTS	ELEVATION
15 - - - - - - - - 16 - - - - - - - - - -			SAND (Lower) - trace - brown to pinkish bro - fine to medium grair	wn, dense,	moist								278
-17 -17			- pinkish brown, medi		below 17.4 m	X	S99	44	• •			SPT 10, 19, 25 blows/150 mm SPT Recovery 63%	277
-18 18 			- wet below 18.9 m			X	S100	35	•			SPT 11, 18, 17 blows/150 mm SPT Recovery 63%	275
-20													274
21 21 			- compact, fine graine	ed below 21.	3 m	X	S101	15				SPT 3, 6, 9 blows/150	273
23												SPT Recovery 100%	271 –
<u>-</u> 24						X	S102	14				SPT 1, 5, 9 blows/150	270 -
			sand.	I at 18.9 m b	elow ground surface in		Y					mm SPT Recovery 75%	268 –
LOG OF TEST HOLE TH LOGS-SSM FINAL GPJ UMA WINN GDT 4/18/14 87 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30			Methane effervesor Installed 25 mm dia with 10.7 m screen fro surface and 0.90 m si Above ground prote	ence observ ameter mon om 3.0 to 13 tick-up. ective casing	toring well (MW13-04) 3.7 m below ground g installed.								267 –
98-88M FINAL. G			Test hole sloughed sealed with bentonite	d at 19.2 m b to 13.7 m, bentonite to nitoring:	elow ground surface, packfilled with well gravel 0.10 m and concreted to								266 – 265 –
29 121 129 121 121 121 121 121 121 121 121 121 121			- Julie 23, 2013 at	III (LICV.	200.4)								264 –
L L			A = C	014					LOGGED BY: Sam Os			ETION DEPTH: 24.99 m	
000			A=C						REVIEWED BY: Zeya		COMPL	ETION DATE: 6/24/13	0 et 0
۲ L									PROJECT ENGINEER	. KICK LAIVITIE		Page	2 of 2

		Sault St. Marie - Landfill Expansion			IT: C	ity Of Sault Ste. Marie		TESTHOLE NO: TH13-1	
		: 16 T Easting: 704338 Northing: 5162831 UTM N 21.3 FOR: TBT Engineering Consulting Group				T: N		PROJECT NO.: 6011762	
SAMP					<u>IOD:</u> IT SPC	Tire Mounted CME 750) <u>, HSA 194 mm</u> ✓ NO REC	ELEVATION (m): 295.50 COVERY)
SAIVIP	LE I	YPE GRAB IIISHELBY TUBE		SPL	1 320				1
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	☐ Lab Vane ☐ ☐ △ Pocket Pen. △ ♣ Field Vane ♣ (kPa)	COMMENTS	G F
0	<u> </u>	¬ TOPSOIL - rootlets, some sand, trace gravel, trace cobble, trace				20 40 60 80 10	0 50 100 150	0 200	
		clay							29
1		- dark brown to brown, soft, moist SAND (Upper) - some gravel, trace cobble, trace silt - brown, compact, moist - medium to coarse grained							
2	* *	SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, very dense, moist - medium to coarse grained							2
3	* *	nodan e oddos granda							2
4	[*] *	END OF TEST HOLE AT 3.5 m IN SAND and GRAVEL. NOTES:							2
		Power auger refusal at 3.5 m below ground surface in SAND and GRAVEL. No seepage observed during drilling. Test hole open to 3.5 m below ground surface upon							2
5		completion. 4. Test hole backfilled wih auger cuttings after drilling.							2
6 7									2
									2
3									2
9									2
11									2
12									2
3									2
14									2
15									2
10	1	A=COM	1		I	LOGGED BY: Sam Osh REVIEWED BY: Zeyad PROJECT ENGINEER:	Shukri CC	DMPLETION DEPTH: 3.51 m DMPLETION DATE: 6/24/13 Page	

		Sault St. Marie - Landfill Expansion			NT: C	ity Of Sault Ste. Marie	TESTHOLE NO: TH13-13	
		: 16 T Easting: 704336 Northing: 5162743 UTM N 22.9					PROJECT NO.: 60117627	_
		TOR: TBT Engineering Consulting Group	N	<u>IETH</u>	HOD:	Tire Mounted CME 750, HSA 194 mm	ELEVATION (m): 292.50	_
SAMP	LET	YPE GRAB SHELBY TUBE	\mathbb{Z}	SPL	IT SPO			
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	COMMENTS	NOITWA
0	<u> </u>	TOPSOIL - rootlets, some sand, trace gravel, trace cobble, trace				20 40 60 80 100 50 100 150	200	_
		\clay \- dark brown to brown, moist, soft						29
1		SAND (Upper) - trace gravel, trace silt, trace cobble - brown, moist, compact - medium to coarse grained						20
2								29
3	4 4	SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, dense, moist - medium to coarse grained						2
4	* *							2
	, ,							2
5		SAND (Lower) - trace gravel, trace silt - pinkish brown, compact, moist - medium to coarse grained						2
6								2
7								2
8								2
9								
10								2
11								2
12								2
								2
13								2
14								2
15						LOCCED BY: Som Ochod:	MPLETION DEPTH: 15.39 m	_
		A=COM					MPLETION DEPTH: 15.39 m MPLETION DATE: 6/25/13	_
						PROJECT ENGINEER: Rick Talvitie	Page 1	_

		Sault St. Marie - Landfill Expansion : 16 T Easting: 704336 Northing: 5162743 UTM N 22			IT: Ci	ty Of Sault Ste. Marie		HOLE NO: TH13- 1 ECT NO.: 601176	
		TOR: TBT Engineering Consulting Group				Tire Mounted CME 750, HSA 194 mm		<u>-CT NO.: 601176.</u> ATION (m): 292.50	
SAMP					IT SPO	ON BULK 750, HSA 194 MIN	RECOVERY	CORE	<i>.</i>
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS UNDRAINED SHEAF	STRENGTH	COMMENTS	Q H
15						20 40 60 80 100 50 100	150 200		
16 17		END OF TEST HOLE AT 15.39 m IN SAND. NOTES: 1. No seepage observed during drilling. 2. Test hole open to 13.7 m below ground surface upon completion. 3. Test hole backfilled with auger cuttings after drilling.							21
18									21
19									2
20									2
21									2
22									2
23									2
24									2
25									2
27									2
18									2
29									2
30									2
		A=COM				LOGGED BY: Sam Oshati REVIEWED BY: Zeyad Shukri PROJECT ENGINEER: Rick Talvitie		ON DEPTH: 15.39 m ON DATE: 6/25/13 Page	

Appendix E Laboratory Test Results

MOISTURE CONTENT

JOB No.: 60117627 CLIENT: City of SSM

PROJECT: SSM Landfill Expansion

DATE: July 16, 2013

HOLE NO.	TH13 - 01					-
SAMPLE NO.	G3	G6	G9	S11	S13	S14
DEPTH (FT)	12 - 13	21.5 - 22.5	31.5	40 - 41.5	50 - 51.5	55 - 56.5
MOISTURE CONTENT %	41.8	18.9	4.8	2.9	5.6	19.0
HOLE NO.	TH13 - 01	-	TH13 - 02	B44		TH13 - 03
SAMPLE NO.	S15	S16	S20	S21	S22	S24
DEPTH (FT)	60 - 61.5	65 - 66.5	20.0	25.0	30.0	5.0
MOISTURE CONTENT %	10.1	12.7	4.5	10.9	7.3	4.8
HOLE NO.	TH13 - 03	-	-	-	-	-
SAMPLE NO.	S26	S28	S29	S31	S32	S33
DEPTH (FT)	15.0	25.0	30.0	40.0	45.0	50.0
MOISTURE CONTENT %	5.6	3.8	6.2	3.1	5.3	8.7
						and the second s
HOLE NO.	TH13 - 03	_	_	TH13 - 05	-	-
SAMPLE NO.	S34	S35	S36	S44	S45	S46
DEPTH (FT)	55.0	60.0	65.0	15.0	20.0	25.0
MOISTURE CONTENT %	17.5	14.2	15.0	7.3	8.6	11.6

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

MOISTURE CONTENT

JOB No.: 60117627 CLIENT: City of SSM

PROJECT: SSM Landfill Expansion

DATE: July 16, 2013

HOLE NO.	TH13 - 05		***			TH13 - 06
SAMPLE NO.	S47	 S48	S49	 S50	 S51	S54
DEPTH (FT)	30.0	35.0	45.0	55.0	65.0	5.5
DEI 111 (11)	50.0	00.0	70.0	JU.U		0.0
MOISTURE CONTENT %	16.1	19.9	17.4	17.8	17.6	4.9
HOLE NO.	TH13 - 06	***	TH13 - 07		-	-
SAMPLE NO.	S55	G56	S57	S58	S59	S60
DEPTH (FT)	15.0	16.0	5.0	10.0	15.0	20.0
MOISTURE CONTENT %	3.8	4.4	4.5	5.3	3.2	3.0
HOLE NO.	TH13 - 07	_	-	-	**	-
SAMPLE NO.	S61	S62	S63	S64	S65	S66
DEPTH (FT)	25.0	30.0	35.0	40.0	50.0	60.0
MOISTURE CONTENT %	4.2	4.6	5.9	11.5	5.7	17.7
HOLE NO.	TH13 - 07		TH13 - 08	-	•	-
SAMPLE NO.	S67	G68	S69	S71	S72	S74
DEPTH (FT)	70.0	80.0	5.0	15.0	20.0	30.0
MOISTURE CONTENT %	18.7	18.8	5.3	12.6	2.5	2.6

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (204) 284-2040

MOISTURE CONTENT

JOB No.: 60117627 CLIENT: City of SSM

PROJECT: SSM Landfill Expansion

DATE: July 16, 2013

	·					
HOLE NO.	TH13 - 08	44	-		_	_
SAMPLE NO.	S75	S76	S77	S78	S79	S80
DEPTH (FT)	35.0	40.0	50.0	60.0	70.0	85.0
MOISTURE CONTENT %	3.5	7.4	6.2	5.3	2.4	6.4
HOLE NO.	TH13 - 08	TH13 - 09	-	-	-	_
SAMPLE NO.	S81	S82	S84	S85	S86	S87
DEPTH (FT)	100.0	5.0	15.0	20.0	25.0	30.0
MOISTURE CONTENT %	20.1	6.3	6.7	4.5	4.8	4.6
HOLE NO.	TH13 - 09	TH13 - 10B	TH13 - 11B		_	-
SAMPLE NO.	S88	S94	S99	S100	S101	S102
DEPTH (FT)	35.0	5.0	55.0	60.0	70.0	80.0
MOISTURE CONTENT %	4	6.7	5.1	9.9	21.7	20.8
HOLE NO.						
SAMPLE NO.						
DEPTH (FT)					***************************************	

AECOM

NOTES:

MATERIALS LABORATORY AECOM

99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (204) 284-2040

15-Jul-13

Date:

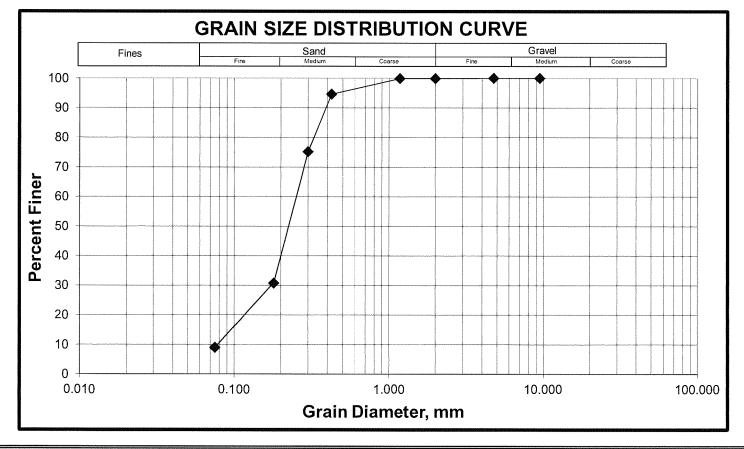
A=COM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM
Project: SSM Landfill Expansion
Job No: 60117627


Sample No.: Test Hole No.: S13

Depth:

TH13 - 01 50 - 51.5'

Sample Description:

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		
12.5	1/2"		
9.5	3/8"		
4.75	No. 4	100.0	
2.00	No. 10	100.0	
1.18	No. 16	99.9	
0.425	No. 40	94.6	
0.300	No. 50	75.1	***************************************
0.180	No. 80	30.8	
0.075	No. 200	9.0	

A=COM

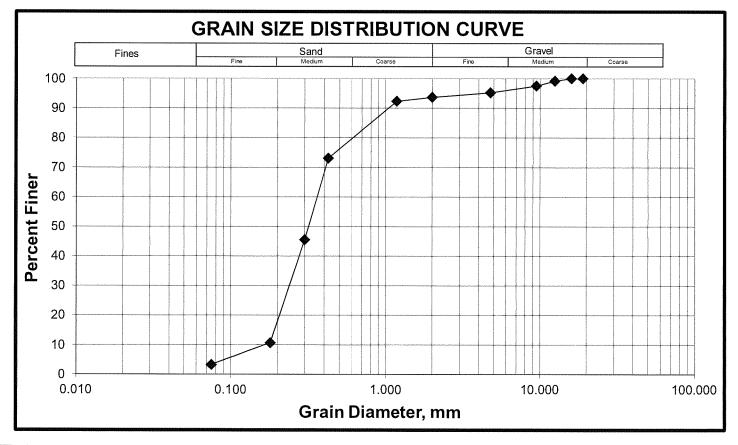
MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM
Project: SSM Landfill Expansion
Job No: 60117627

Sample No.: Test Hole No.: S26 TH13 - 03


Depth:

15'

Date : 15-Jul-13

Sample Description: Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"	100.0	Miles and the second se
12.5	1/2"	99.2	
9.5	3/8"	97.5	
4.75	No. 4	95.3	
2.00	No. 10	93.7	
1.18	No. 16	92.3	
0.425	No. 40	73.1	
0.300	No. 50	45.5	
0.180	No. 80	10.7	
0.075	No. 200	3.3	

AECOM

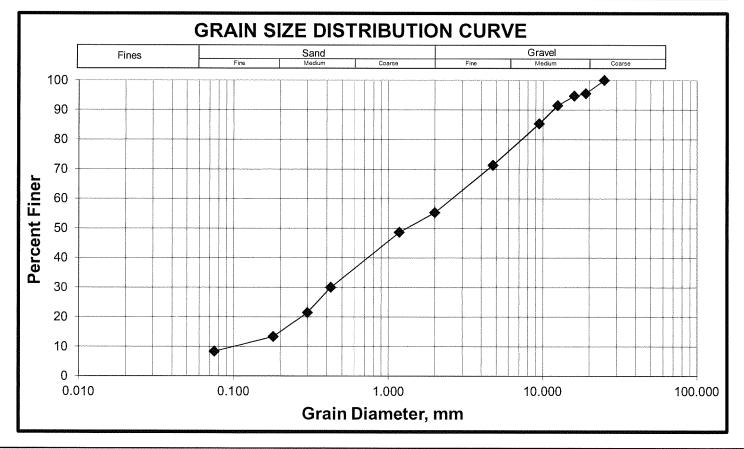
MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM Project: SSM Landfill Expansion

Job No: 60117627 15-Jul-13 Date:


S29 Sample No.:

Test Hole No.: TH13 - 03

Depth: 30'

Sample Description: Sand

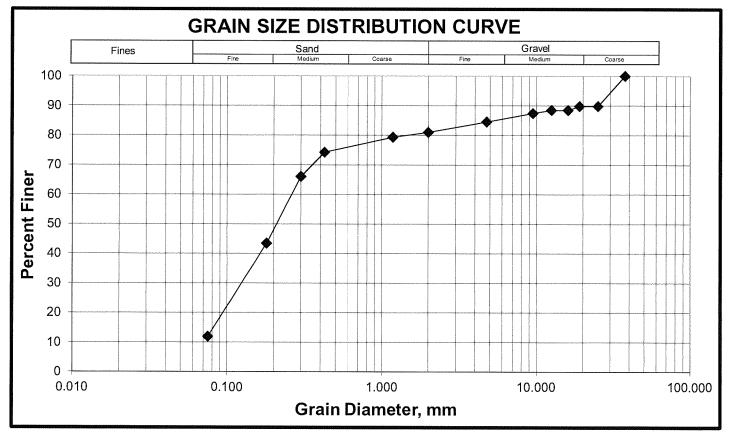
Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"	100.0	
19.0	3/4"	95.6	
16.0	5/8"	94.7	
12.5	1/2"	91.5	
9.5	3/8"	85.3	
4.75	No. 4	71.3	
2.00	No. 10	55.3	
1.18	No. 16	48.6	
0.425	No. 40	30.0	
0.300	No. 50	21.5	
0.180	No. 80	13.3	
0.075	No. 200	8.4	

A=COM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM SSM Landfill Expansion Project:


Sample No.: Test Hole No.: S34

Job No: 60117627 Depth:

TH13 - 03 55'

Date: 15-Jul-13 Sample Description:

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"	100.0	
25.0	1"	89.9	· · · · · · · · · · · · · · · · · · ·
19.0	3/4"	89.9	
16.0	5/8"	88.5	
12.5	1/2"	88.5	
9.5	3/8"	87.4	
4.75	No. 4	84.5	
2.00	No. 10	81.0	
1.18	No. 16	79.4	
0.425	No. 40	74.2	
0.300	No. 50	66.0	
0.180	No. 80	43.4	
0.075	No. 200	11.9	

A=COM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM

SSM Landfill Expansion Project:

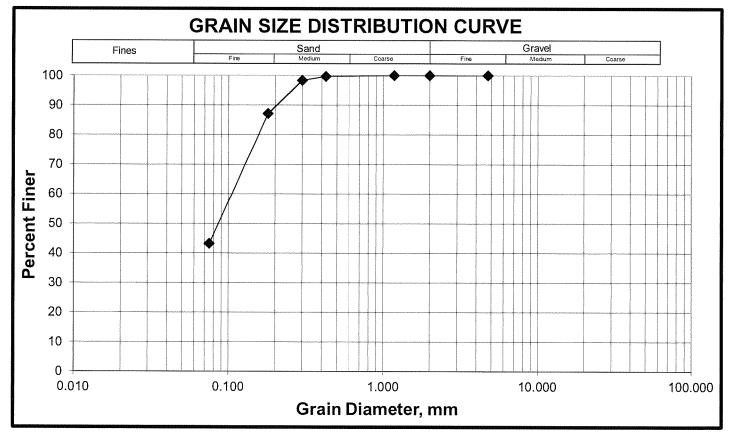
Job No: 15-Jul-13 Date:

60117627

Sample No.

Test Hole No.:

Depth:


55'

S50

TH13 - 05

Sample Description:

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		
12.5	1/2"		
9.5	3/8"		
4.75	No. 4		
2.00	No. 10	100.0	
1.18	No. 16	100.0	
0.425	No. 40	99.7	
0.300	No. 50	98.4	
0.180	No. 80	87.2	
0.075	No. 200	43.2	

AECOM

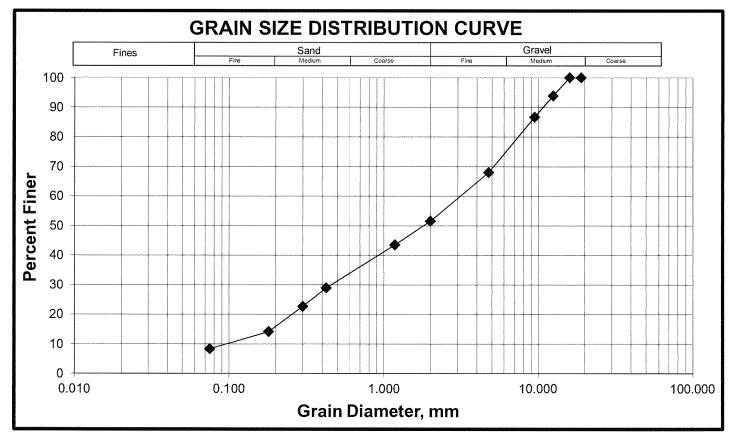
MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM SSM Landfill Expansion Project: Job No: 60117627

Sample No.: Test Hole No.:


S57 TH13 - 07

Depth:

5'

Date: 15-Jul-13 Sample Description:

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		**************************************
100.0	4"		****
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"	100.0	
12.5	1/2"	93.9	
9.5	3/8"	86.7	
4.75	No. 4	67.9	
2.00	No. 10	51.5	
1.18	No. 16	43.5	
0.425	No. 40	29.0	
0.300	No. 50	22.7	
0.180	No. 80	14.2	
0.075	No. 200	8.4	

A=COM

MATERIALS LABORATORY

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (204) 284-2040

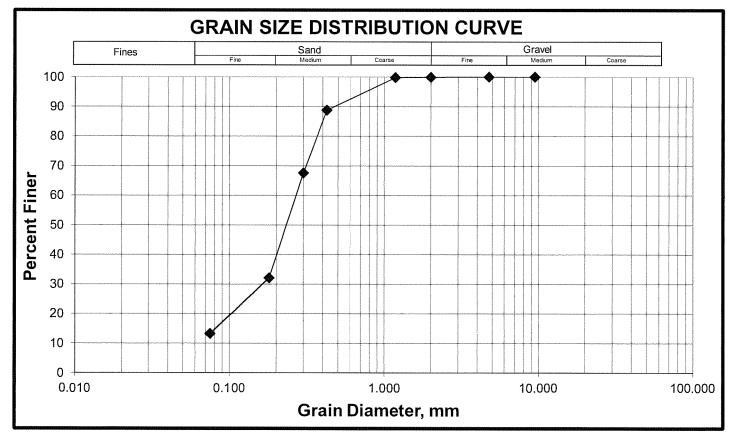
Client: City of SSM Project: SSM Landfill Expansion

60117627 15-Jul-13

Job No:

Date:

Sample No.:


S68 Test Hole No.: TH13 - 07

Depth:

80'

Sample Description:

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		The second secon
12.5	1/2"		
9.5	3/8"		
4.75	No. 4	100.0	
2.00	No. 10	99.9	
1.18	No. 16	99.8	
0.425	No. 40	88.8	
0.300	No. 50	67.6	
0.180	No. 80	32.0	
0.075	No. 200	13.3	

A=COM

MATERIALS LABORATORY

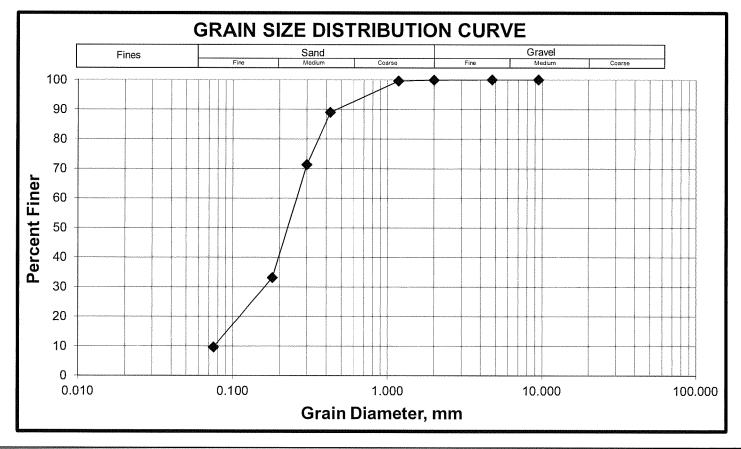
AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM Project: SSM Landfill Expansion

Job No: 60117627 15-Jul-13 Date:

S71 Sample No.:


TH13 - 08 Test Hole No.:

Depth: 15'

Sample Description:

Sa	nd		

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		
12.5	1/2"		
9.5	3/8"		
4.75	No. 4	100.0	
2.00	No. 10	100.0	
1.18	No. 16	99.6	
0.425	No. 40	89.0	
0.300	No. 50	71.3	
0.180	No. 80	33.1	
0.075	No. 200	9.7	

A=COM

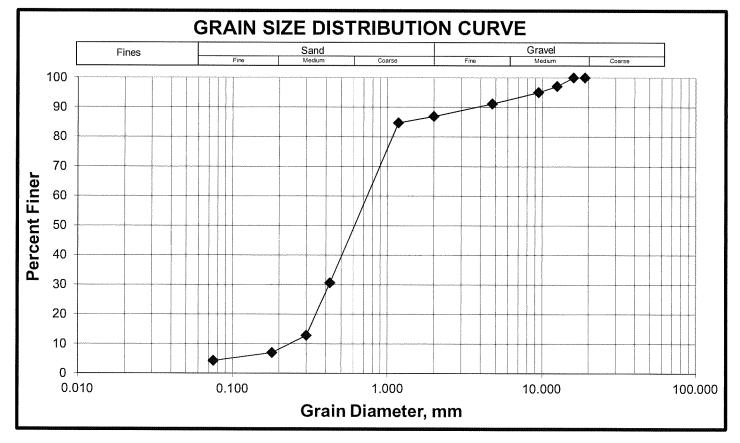
MATERIALS LABORATORY

AECOM

Client: City of SSM Project: SSM Landfill

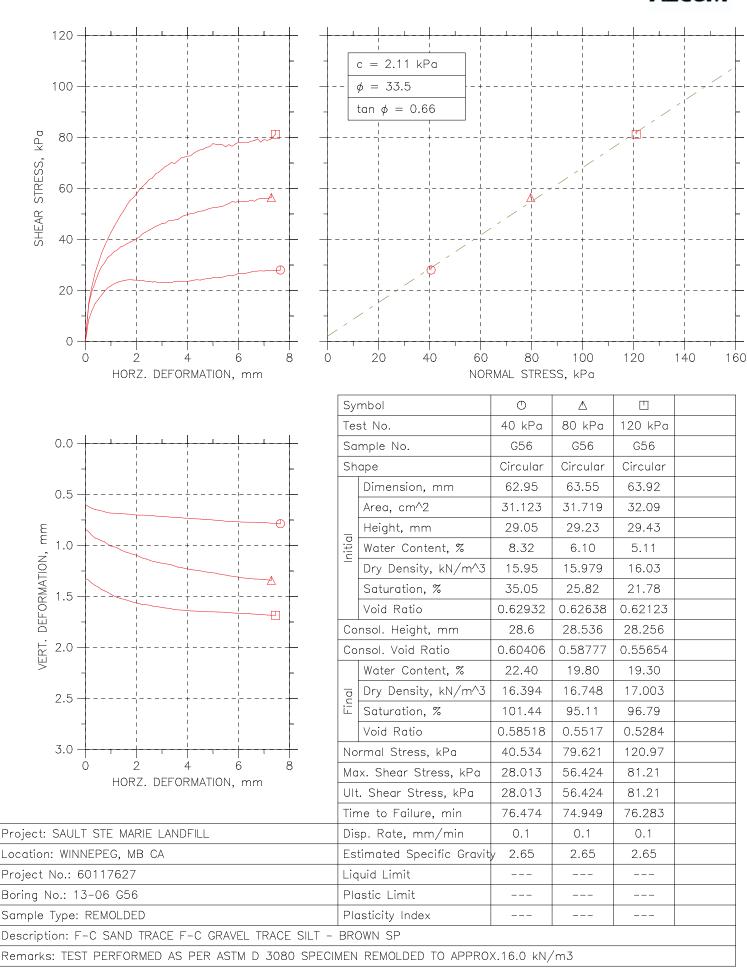
SSM Landfill Expansion

Job No: 60117627 Date: 15-Jul-13 Sample No.: Test Hole No.:


S82 TH13 - 09

Depth:

5'


Sample Description:

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"	100.0	110000000000000000000000000000000000000
12.5	1/2"	97.1	
9.5	3/8"	95.0	
4.75	No. 4	91.1	
2.00	No. 10	86.9	
1.18	No. 16	84.8	
0.425	No. 40	30.6	
0.300	No. 50	12.8	
0.180	No. 80	7.0	,
0.075	No. 200	4.3	

DIRECT SHEAR TEST REPORT

Project: SAULT STE MARIE LANDFILL Location: WINNEPEG, MB CA
Boring No.: 13-06 G56 Tested By: BCM
Sample No.: G56 Test Date: 8/1/13
Test No.: 40 kPa Sample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 16.0' Elevation: ----

Soil Description: F-C SAND TRACE F-C GRAVEL TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.0 kN/m3

	Elapsed Time min	Vertical Stress kPa	Vertical Displacement	Horizontal Stress kPa	Horizontal Displacement
	111111	Kra	mm	Kra	mm
1	0.00	40.53	0.599	0	0
2	3.40	40.38	0.6187	8.469	0.1255
3 4	4.68 6.08	40.3 40.38	0.635	11.96	0.251 0.3753
5	7.07	40.38	0.6473 0.6538	14.87 16.46	0.5008
6	8.36	40.38	0.6603	18.12	0.6251
7	9.62	40.46	0.6701	19.78	0.7507
8	10.90	40.53	0.6791	21.02	0.8762
9	12.01	40.53	0.6824	21.79	1
10 11	13.24 14.57	40.61 40.53	0.684 0.6857	22.62 23.16	1.126 1.25
12	15.61	40.53	0.6881	23.10	1.376
13	16.94	40.53	0.6898	23.87	1.5
14	18.16	40.61	0.6922	24.1	1.626
15	19.38	40.61	0.6938	24.22	1.751
16 17	20.38	40.53	0.6979	24.1 23.99	1.875
18	21.74 22.94	40.53 40.53	0.7012 0.7028	23.93	2.001 2.125
19	24.01	40.61	0.702	23.87	2.251
20	25.31	40.46	0.7036	23.63	2.375
21	26.66	40.53	0.7045	23.51	2.501
22	27.85	40.53	0.7077	23.33	2.627
23 24	28.93 30.37	40.53 40.53	0.7118 0.7143	23.39 22.98	2.75 2.876
25	31.42	40.53	0.7159	23.04	3
26	32.68	40.53	0.7184	23.16	3.126
27	33.98	40.53	0.72	23.16	3.251
28 29	35.18	40.46	0.7233	23.04	3.376
30	36.38 37.55	40.61 40.61	0.7249 0.7257	23.63 23.63	3.501 3.625
31	38.67	40.53	0.7282	23.45	3.751
32	39.98	40.46	0.7322	23.63	3.875
33	41.06	40.61	0.7331	23.63	4.001
34 35	42.46 43.59	40.53 40.61	0.7355 0.7372	23.75 24.05	4.126 4.25
36	44.77	40.51	0.7372	24.03	4.23
37	46.10	40.53	0.7404	24.05	4.5
38	47.35	40.61	0.7445	24.4	4.626
39	48.47	40.53	0.7453	24.58	4.75
40 41	49.62 50.95	40.61 40.61	0.747 0.7502	24.64 25.05	4.876 5.001
42	52.08	40.53	0.7535	24.99	5.125
43	53.30	40.53	0.7568	25.05	5.251
44	54.46	40.53	0.7576	25.23	5.375
45	55.68	40.53	0.7633	25.59 25.94	5.501
46 47	56.97 58.19	40.53 40.46	0.7641 0.7641	25.94	5.625 5.751
48	59.36	40.53	0.7674	26.12	5.876
49	60.59	40.61	0.7674	26.65	6
50	61.68	40.61	0.7707	26.59	6.126
51 52	63.01 64.35	40.53 40.61	0.7715 0.7723	26.65 26.95	6.25 6.376
53	65.59	40.51	0.7723	27.24	6.501
54	66.60	40.46	0.7731	27.54	6.626
55	67.85	40.53	0.7739	27.6	6.751
56	68.87	40.53	0.7756	27.72	6.875
57 58	70.05 71.45	40.53 40.61	0.7756 0.7772	27.6 27.89	7.001 7.125
58 59	72.68	40.61	0.7772	27.89	7.125
60	73.87	40.53	0.7821	27.89	7.376
61	75.15	40.61	0.7862	27.78	7.5
62	76.24	40.23	0.787	27.89	7.626
63	76.47	40.53	0.787	28.01	7.643

Project: SAULT STE MARIE LANDFILL Location: WINNEPEG, MB CA
Boring No.: 13-06 G56 Tested By: BCM
Sample No.: G56 Test Date: 8/1/13
Test No.: 80 kPa Sample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 16.0' Elevation: ----

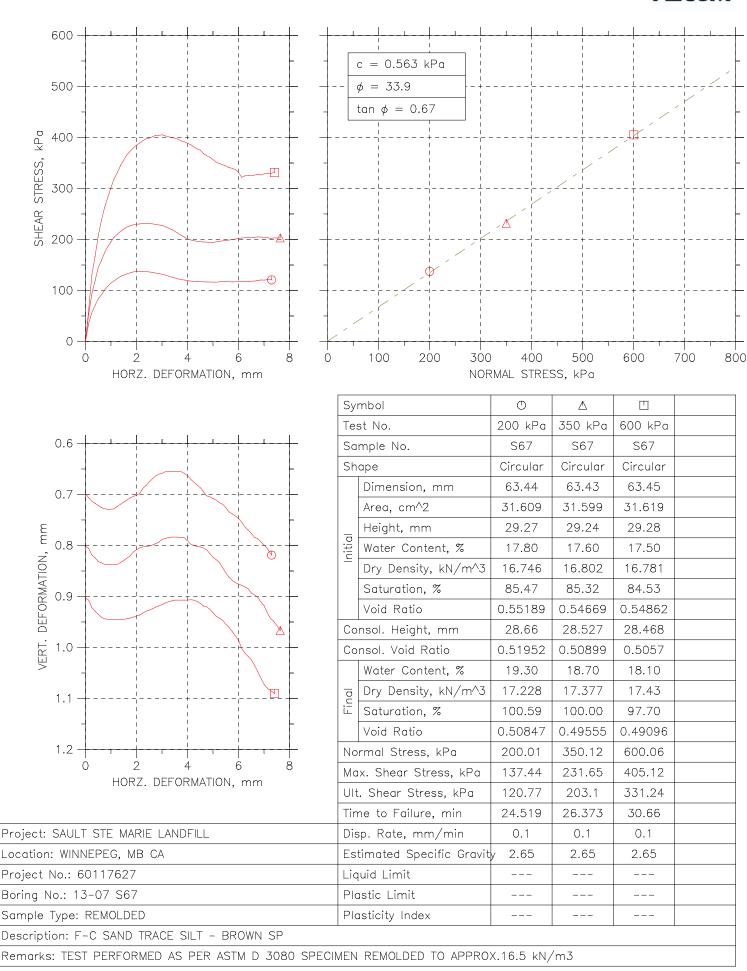
Soil Description: F-C SAND TRACE F-C GRAVEL TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.0 kN/m3

	Elapsed	Vertical	Vertical	Horizontal	Horizontal
	Time	Stress	Displacement	Stress	Displacement
	min	kPa	mm	kPa	mm
1 2 3	0.00 5.32	79.54 79.32	0.8402 0.8651	0 14.21	0.1255
3	6.59	79.54	0.9003	19.6	0.251
4	7.80	79.09	0.9283	23.16	0.3753
5	8.98	79.32	0.9377	26.59	0.5008
6	10.28	79.54	0.9532	29.28	0.6251
7	11.35	79.47	0.9646	30.88	0.7507
8 9	12.78 13.90	79.62 79.47	0.9885	32.96 33.88	0.8762
10	15.17	79.54	1.013	35.23	1.126
11	16.21	79.32		35.9	1.25
12 13	17.53 18.72	79.54 79.47	1.043	37.06 37.49	1.376
14	19.95	79.62	1.068	38.29	1.626
15	21.14	79.54	1.077	38.96	1.751
16	22.42	79.47	1.088	39.52	1.875
17	23.62	79.47	1.095	40.31	2.001
18	24.78	79.54	1.112	40.99	2.125
19	26.17	79.54	1.124	42.33	2.251
20	27.22	79.54	1.132	42.95	2.375
21	28.49	79.62	1.143	43.68	2.501
22 23 24	29.76 31.00 32.24	79.62 79.62	1.154 1.161	44.36 45.09	2.626 2.75 2.876
25 26	33.43 34.48	79.54 79.54 79.62	1.168 1.174 1.179	45.64 46.25 46.38	3.126
27	35.86	79.62	1.186	47.3	3.251
28	36.99	79.62	1.191	47.36	3.376
29	38.32	79.62	1.201	47.66	3.501
30	39.43	79.54		47.85	3.625
31	40.61	79.62	1.218	48.77	3.751
32	41.92	79.62	1.223	49.44	3.875
33	43.17	79.62	1.229	49.69	4.001
34	44.31	79.62	1.236	50.11	4.126
35	45.51	79.62	1.241	50.24	4.25
36	46.81	79.62		50.79	4.376
37	47.94	79.62	1.249	51.09	4.5
38	49.14	79.54		51.22	4.627
39	50.35	79.62	1.26	51.71	4.75
40	51.54	79.62	1.263	52.2	4.876
41	52.85	79.62	1.268	52.44	5.001
42	54.04	79.62	1.273	52.56	5.125
	55.30	79.54	1.28	52.75	5.251
44	56.53	79.62	1.286	52.99	5.375
45	57.53	79.62	1.29	53.61	5.501
46	58.87	79.54	1.298	54.04	5.625
47	60.24	79.62	1.302	54.83	5.751
48	61.43	79.62	1.307	54.65	5.876
49	62.49	79.62	1.31	54.83	6
50	63.75	79.62	1.315	54.77	6.126
51	64.73		1.32	54.89	6.25
52	65.99	79.62	1.322	54.95	6.376
53	67.30	79.62	1.326	55.44	6.501
54	68.52	79.62	1.329	54.95	6.626
55	69.72	79.62	1.33	55.81	6.752
56	71.02	79.62	1.332	56.06	6.875
57	72.17	79.62	1.334	56.06	7.001
58	73.39	79.54	1.337	55.93	7.125
59	74.62	79.62	1.341	56.36	7.251
60	74.95	79.62		56.42	7.29

Project: SAULT STE MARIE LANDFILL
Boring No.: 13-06 G56
Sample No.: G56
Test No.: 120 kPa

Location: WINNEPEG, MB CA
Tested By: BCM
Test Date: 8/1/13
Sample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 16.0' Elevation: ----


Soil Description: F-C SAND TRACE F-C GRAVEL TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.0 kN/m3

	Elapsed	Vertical	Vertical	Horizontal	Horizontal
	Time	Stress	Displacement	Stress	Displacement
	min	kPa	mm	kPa	mm
1	0.00	120.9	1.324	0	0
2	4.71	120.9	1.34	14.86	0.1255
3	6.06	120.6	1.369	21.46	0.251
4	7.40	120.5	1.393	26.91	0.3753
5	8.57	120.9	1.408	30.69	0.5008
6	9.82	121	1.432	34.46	0.6251
7	11.01	120.8	1.446	37.46	0.7507
8	12.20	120.7	1.46	40.22	0.8762
9 10 11 12 13	13.39 14.70 15.94 17.17	120.9 120.7 120.7 120.8	1.478 1.497 1.51 1.52 1.527	42.73 45.07 47.23 49.45 51.24	1 1.126 1.25 1.376
13	18.40	121	1.527	51.24	1.5
14	19.60	121	1.536	53.46	1.626
15	20.90	120.9	1.546	55.32	1.751
16	22.00	121	1.556	56.34	1.875
17	23.16	120.9	1.562	57.96	2.001
18	24.40	121	1.572	59.57	2.125
19	25.65	120.8	1.578	60.95	2.251
20	26.81	120.9	1.581	61.97	2.375
21	28.04	120.9	1.585	63.47	2.501
22 23 24 25 26	29.34 30.44 31.75 33.09 34.30	120.9 121 121 121 120.9	1.594 1.597 1.603 1.608	64.13 65.69 66.41 67.49	2.626 2.75 2.876 3
27 28 29 30	35.38 36.69 37.72 39.08	120.9 121 120.9 120.9 120.9	1.612 1.616 1.621 1.629 1.631	68.56 69.28 70.18 69.76 70.84	3.126 3.251 3.376 3.501 3.625
31	40.33	121	1.633	71.98	3.751
32	41.53	121	1.636	72.28	3.875
33	42.78	121	1.639	72.64	4.001
34	43.85	121	1.642	72.82	4.126
35	45.16	121	1.643	73.84	4.25
36	46.28	121	1.644	74.62	4.376
37	47.53	120.7	1.646	75.16	4.5
38	48.74	121	1.648	75.46	4.626
39	49.98	121	1.65	76.18	4.75
40	51.19	121	1.65	76.36	4.876
41	52.50	121	1.65	77.61	5.001
42	53.68	121	1.652	77.25	5.125
43	54.79	121	1.652	77.25	5.251
44 45 46 47 48	56.00 57.41 58.39 59.53 60.95	121 121 121 121 121 121.1	1.653 1.657 1.659 1.661 1.664	77.13 76.3 77.19 76.54 77.37	5.375 5.501 5.625 5.751 5.876
49 50 51 52	62.19 63.48 64.70 65.75	121 121 121 121	1.665 1.666 1.667 1.667	78.09 77.91 77.91 78.09	6.126 6.25 6.376
53	66.99	121	1.671	78.51	6.501
54	68.19	121	1.673	78.81	6.627
55	69.56	121	1.675	79.41	6.751
56	70.76	121	1.678	78.21	6.875
57	72.10	120.9	1.679	79.17	7.001
58	73.11	120.9	1.682	78.87	7.125
59	74.33	121	1.684	79.23	7.251
60	75.40	121	1.684	80.49	7.376
61	76.28	121	1.685	81.21	7.454

DIRECT SHEAR TEST REPORT

Project: SAULT STE MARIE LANDFILL
Boring No.: 13-07 S67
Sample No.: S67
Test No.: 200 kPa

Location: WINNEPEG, MB CA
Tested By: BCM
Test Date: 8/1/13
Sample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 70.0' Elevation: ----

Soil Description: F-C SAND TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.5 kN/m3

VendIks.	IESI FERFO.	NMED AS FER A	SIM D SUOU SEE	CIMEN KEMOLDED	10 AFFROX.10.
	Elapsed	Vertical	Vertical	Horizontal	Horizontal
	Time	Stress	Displacement	Stress	Displacement
	min	kPa	mm	kPa	mm
1	0.00	199.9	0.6987	0	0
2	4.70	199.6	0.7061	35.21	0.1255
3	6.13	199.9	0.7135	56.46	0.251
4	7.36	199.8	0.7175	70.65	0.3753
5	8.71	199.9	0.7216	83.51	0.5008
6	9.72	199.9	0.7257	91.61	0.6251
7	11.08	199.9	0.7282	101	0.7507
8	12.33	199.9	0.729	108.5	0.8762
9	13.60	200	0.729	114.7	1
10	14.67	199.9	0.7282	118.8	1.126
11	15.99	200	0.7233	123.7	1.25
12 13	17.19	200	0.7192	127.5	1.376
	18.35	200.1	0.7151	130.1	1.5
14 15	19.68	200.1	0.711	132.4	1.627 1.751
16	21.06 22.18	200.1	0.7069 0.7036	134.6 136.4	1.875
17	23.54	200.1	0.703	137.2	2.001
18	24.52	200.1	0.6979	137.4	2.125
19	25.76	200	0.6881	137.4	2.251
20	26.89	200	0.6824	137.4	2.375
21	28.28	200	0.6759	136.4	2.501
22	29.50	200.1	0.6693	135.6	2.626
23	30.67	200	0.6636	134.2	2.75
24	31.91	200	0.6603	133	2.876
25	33.15	200	0.6587	131.9	3
26	34.14	200	0.6554	130.4	3.126
27	35.45	199.6	0.6554	128.2	3.251
28	36.73	199.9	0.6546	126.4	3.376
29	37.89	199.9	0.6546	124.6	3.501
30	39.11	199.9	0.6546	122.8	3.625
31	40.26	199.8	0.6554	121.1	3.751
32	41.46	199.9	0.6587	120.6	3.875
33	42.66	199.8	0.6628	119.3	4.001
34	44.04	199.9	0.6701	118.4	4.126
35	45.18	199.8	0.6759	117.8	4.25
36	46.30	199.9	0.6816	117.6	4.376
37	47.53	199.8	0.6865	117.2	4.5
38	48.72	199.9	0.6947	116.8	4.626
39	50.05	199.9	0.7028	116.7	4.75
40	51.20	199.8	0.7045	116.5	4.876
41	52.47	199.8	0.7077	116.5	5.001
42 43	53.48	199.8	0.711	116.2	5.125 5.251
43	54.87 55.90	199.8 199.8	0.7159 0.7192	117 117	5.375
44	57.20	199.8	0.7192	117.2	5.501
46	58.26	199.9	0.7237	117.1	5.625
47	59.54	199.8	0.738	116.7	5.751
48	60.78	199.8	0.7421	117.2	5.876
49	62.04	199.8	0.747	117.3	5.076
50	63.14	199.8	0.7543	117.5	6.126
51	64.47	199.7	0.7633	117.1	6.25
52	65.50	199.9	0.7698	117.6	6.376
53	66.80	199.8	0.7764	118.3	6.501
54	68.10	199.9	0.7837	118.4	6.626
55	69.30	199.8	0.787	119.6	6.751
56	70.42	199.8	0.7927	120.5	6.875
57	71.57	199.8	0.7993	120.3	7.001
58	72.89	199.9	0.805	121.1	7.125
59	74.19	199.8	0.8156	121.1	7.251
60	74.59	199.9	0.8189	120.8	7.299

Project: SAULT STE MARIE LANDFILL
Boring No.: 13-07 S67
Sample No.: S67
Test No.: 350 kPa

Location: WINNEPEG, MB CA
Tested By: BCM
Test Date: 8/1/13
Sample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 70.0' Elevation: ----

Soil Description: F-C SAND TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.5 kN/m3

ellar KS;	IESI PERFO	KMED AS PEK A	SIM D SUOU SPEC	THEN KEMOLDED	10 APPROX.10.
	Elapsed	Vertical	Vertical	Horizontal	Horizontal
	Time	Stress	Displacement	Stress	Displacement
	min	kPa	mm	kPa	mm
1	0.00	349.9	0.802	0	0
2	5.17	349.7	0.8056	53.29	0.1255
3	6.60	349.7	0.8185	93.58	0.251
4	7.76	349.8	0.824	118.7	0.3753
5	9.31	349.9	0.8314	145.2	0.5008
6	10.29	349.9	0.8342	158.6	0.6251
7	11.68	349.9	0.8369	174.7	0.7507
8	12.92	350.1	0.8369	185.8	0.8762
9	14.09	350	0.8379	195.1	1
10	15.49	350	0.8379	204.6	1.126
11	16.49	350	0.8369	210.4	1.251
12	17.81	350.1	0.8333	216	1.376
13	19.00	350.1	0.8296	220.3	1.5
14	20.37	350.1	0.825	224.2	1.626
15 16	21.49 22.70	350 350	0.8204 0.813	226.5 228.8	1.751 1.875
17	23.86	350	0.8084	230	2.001
18	25.00	350	0.8047	230.5	2.125
19	26.37	350.1	0.8029	231.7	2.251
20	27.52	350.1	0.802	231.1	2.375
21	28.73	350.1	0.801	231.1	2.501
22	29.90	350	0.7992	230.5	2.626
23	31.09	350.1	0.7964	229.6	2.75
24	32.33	350	0.7937	228.5	2.876
25	33.64	350	0.7881	227.5	3
26 27	34.74	350	0.7863	225.3	3.126
28	36.04 37.27	350 350	0.7845 0.7835	222.4 219.5	3.251 3.376
29	38.40	349.9	0.7835	216.3	3.501
30	39.69	349.9	0.7835	212.1	3.625
31	40.82	349.9	0.7845	208.2	3.751
32	41.85	349.9	0.7845	204.9	3.875
33	43.30	349.9	0.7909	200.8	4.001
34	44.40	349.8	0.7973	199.1	4.126
35	45.68	349.9	0.8001	197.6	4.25
36	46.77	349.9	0.802	196.4	4.376
37	47.95	349.9	0.8029	195.6	4.5
38 39	49.19	349.8	0.8047	194.9	4.627
40	50.47 51.75	349.9 349.8	0.8084 0.8158	194.9 193.7	4.75 4.876
41	52.92	349.9	0.8231	194	5.001
42	54.08	349.8	0.8277	195.4	5.125
43	55.32	349.9	0.8333	195.8	5.251
44	56.55	349.8	0.8434	197.4	5.375
45	57.72	349.9	0.8535	197.6	5.501
46	58.90	349.9	0.8618	198.9	5.625
47	60.14	349.9	0.8682	200.1	5.751
48	61.35	349.8	0.8728	200.8	5.876
49	62.66	349.9	0.8756	202.1	6
50 51	63.82 64.86	349.8 349.7	0.8784 0.8811	202.8 203.2	6.126 6.25
52	66.14	349.9	0.8848	203.2	6.376
53	67.54	349.8	0.8931	204.2	6.501
54	68.69	349.9	0.8968	204	6.626
55	69.75	349.8	0.9014	204.9	6.751
56	71.10	349.8	0.9106	204.7	6.875
57	72.07	349.8	0.918	204.3	7.001
58	73.29	349.9	0.9309	204.2	7.125
59	74.62	349.9	0.9428	201.5	7.251
60	75.80	349.9	0.9483	203	7.376
61	76.94	349.9	0.9566	202.8	7.5
62	78.24	349.9	0.9658	203.2	7.626
63	78.33	349.9	0.9668	203.1	7.639

Project: SAULT STE MARIE LANDFILL
Boring No.: 13-07 S67
Sample No.: S67
Test No.: 600 kPa

Location: WINNEPEG, MB CA
Tested By: BCM
Test Date: 8/1/13
Sample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 70.0' Elevation: ----

Soil Description: F-C SAND TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.5 kN/m3

demarks:	TEST PERF	ORMED AS PER A	STM D 3080 SPE	ECIMEN REMOLDED	TO APPROX.16.
	Elapsed	Vertical	Vertical	Horizontal	Horizontal
	Time	Stress	Displacement	Stress	Displacement
	min	kPa	mm	kPa	mm
1	0.00	599.9	0.9031	0	0
2	1.82	599.8	0.9071	61.11	0.1255
3	3.44	599.7	0.9218	129.9	0.251
4	4.51	599.9	0.9292	166.5	0.3753
5	5.92	599.8	0.9349	207.4	0.5008
6	7.21	599.9	0.9406	237.8	0.6251
7	8.47	599.9	0.9439	263	0.7507
8	9.62	599.9	0.9447	282.5	0.8762
9 10	10.88	599.9	0.9455 0.9455	301.9	1 126
11	12.20 13.28	600.1 600	0.9455	319.3 331.3	1.126 1.25
12	14.68	600.1	0.9455	345.1	1.376
13	15.88	600.1	0.9447	355.8	1.5
14	17.13	600.1	0.9439	365.7	1.626
15	18.22	600.1	0.9423	372.9	1.751
16	19.59	600.1	0.9406	379.1	1.875
17	20.80	600.1	0.9382	384.8	2.001
18	21.97	600.1	0.9366	389.1	2.125
19	23.24	600.1	0.9325	393.6	2.251
20	24.54	600.1	0.9292	397.4	2.375
21	25.74	600.1	0.9268	398.6	2.501
22	26.91	600.1	0.9243	401.4	2.626
23 24	28.30 29.39	600.1	0.921	403.9 404.3	2.75 2.876
25	30.66	600.1 600.1	0.9186 0.9161	404.3	2.876
26	31.91	600.1	0.9129	403.1	3.126
27	33.13	600	0.9104	401.4	3.251
28	34.42	600.1	0.9088	399.8	3.376
29	35.59	600	0.9071	398.8	3.501
30	36.60	599.9	0.9071	396.7	3.625
31	38.05	600	0.9071	393.1	3.751
32	39.13	600	0.9071	391.7	3.875
33	40.53	599.9	0.9071	388.5	4.001
34	41.63	600	0.9063	385.9	4.126
35 36	42.81	599.9 599.9	0.9071	381.5 377.7	4.25 4.376
36	44.01 45.30	599.9	0.9096 0.9137	377.7	4.376
38	46.61	599.9	0.9186	368.2	4.626
39	47.78	599.9	0.9202	364.1	4.75
40	48.82	599.9	0.9251	361.5	4.876
41	50.06	599.8	0.9317	356.6	5.001
42	51.34	599.9	0.939	351.5	5.125
43	52.48	599.9	0.9423	349	5.251
44	53.68	599.8	0.9464	346.5	5.375
45	54.83	599.9	0.9545	344.2	5.501
46	56.10	599.8	0.9603	341 339.5	5.625 5.751
47 48	57.38 58.64	599.8 599.9	0.9684 0.9766	337.1	5.876
49	59.67	599.8	0.9856	331.9	5.070
50	60.94	599.7	1.002	321.6	6.126
51	62.25	599.9	1.011	324.6	6.25
52	63.42	599.8	1.017	325.2	6.376
53	64.51	599.7	1.024	325	6.501
54	65.91	599.9	1.035	326.2	6.626
55	66.96	599.8	1.047	327.6	6.751
56	68.21	599.7	1.06	326.4	6.875
57	69.53	599.9	1.072	328.4	7.001
58	70.62	599.8	1.08	329.4	7.125
59 60	71.88	599.8	1.084	329.4	7.251 7.377
60 61	73.12 73.46	599.8 599.8	1.089 1.09	330.8 331.2	7.377
ЮΤ	13.46	299.8	1.09	331.2	7.414

Appendix FSlope Stability Analysis

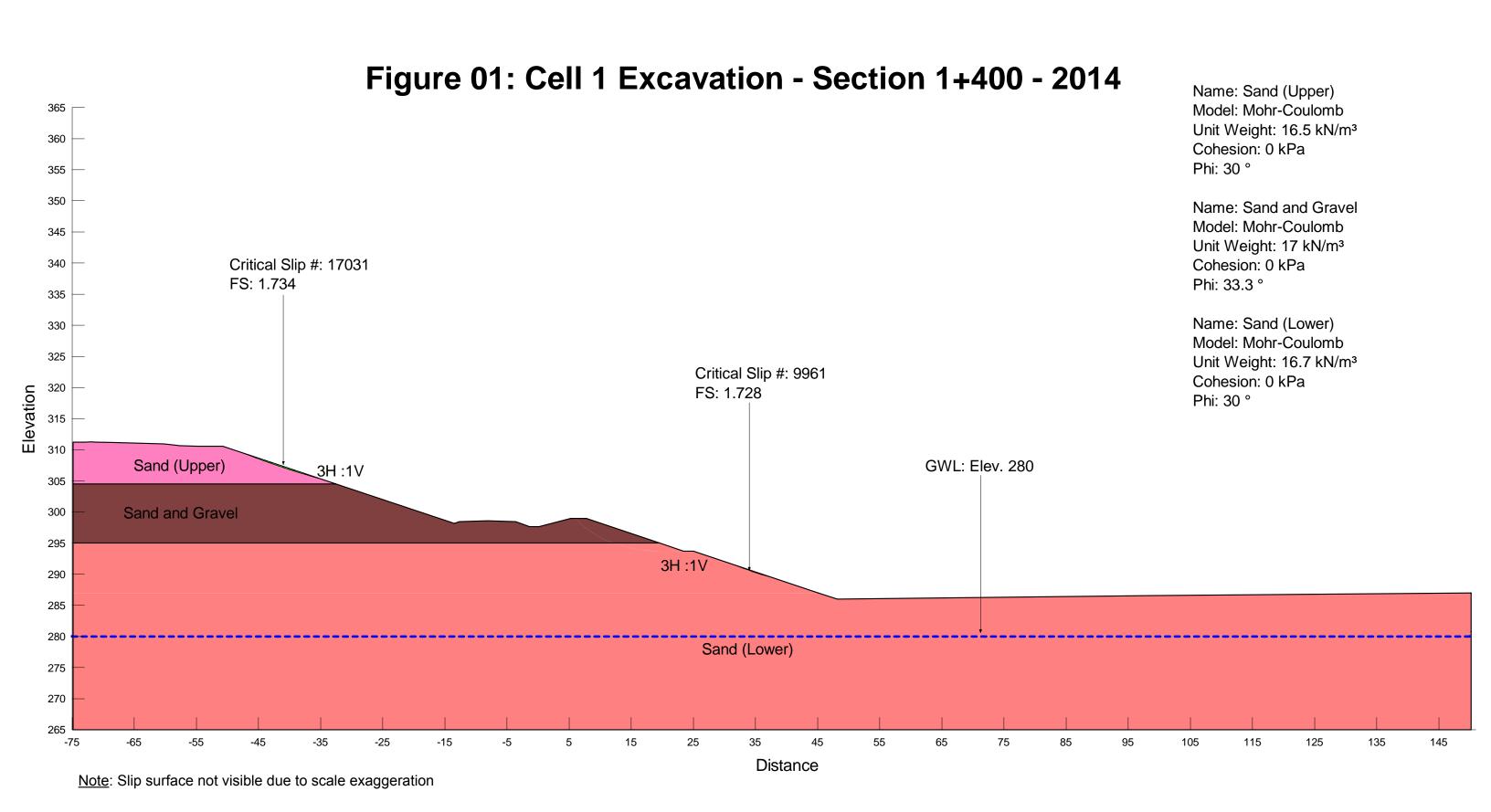
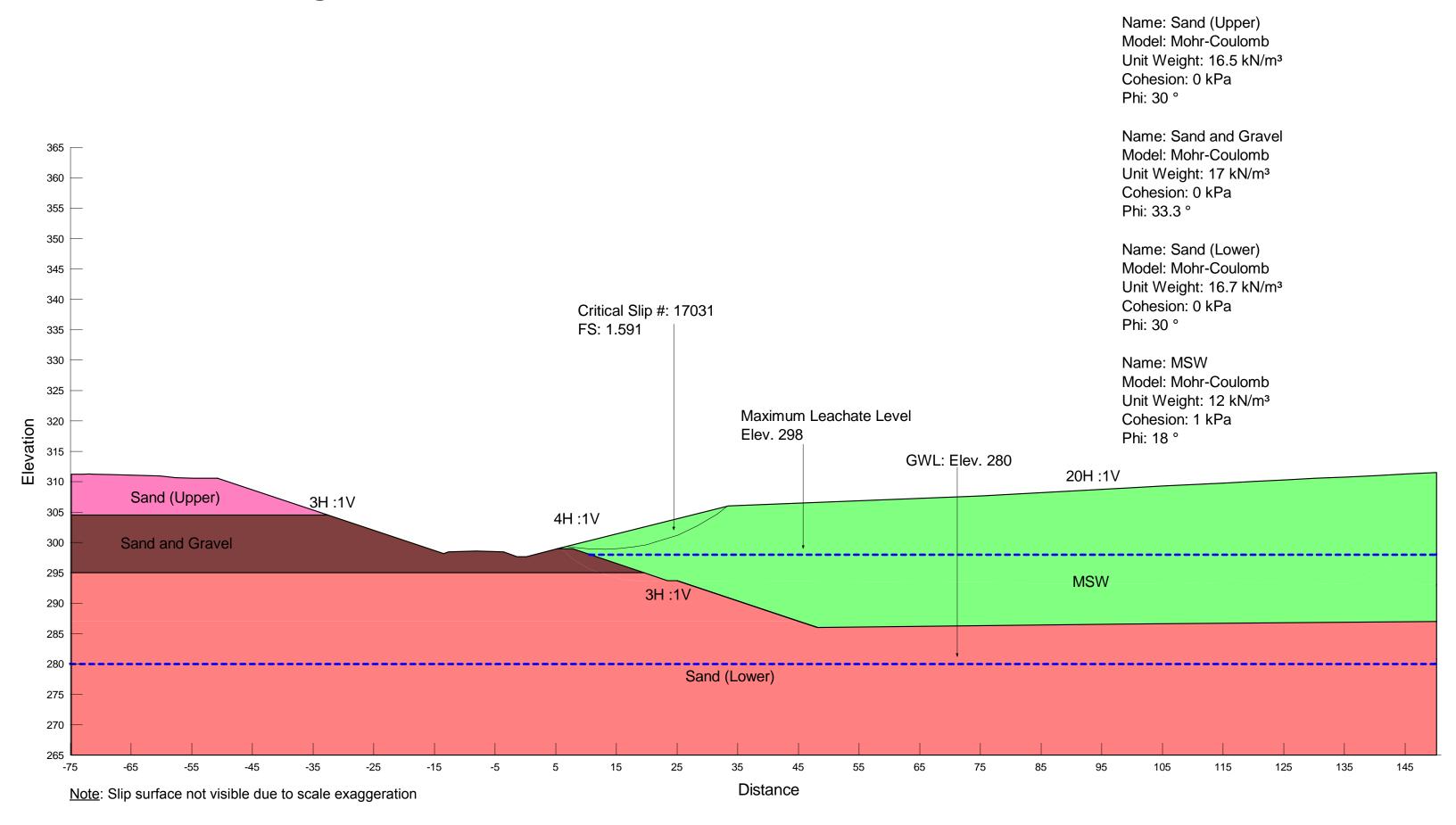
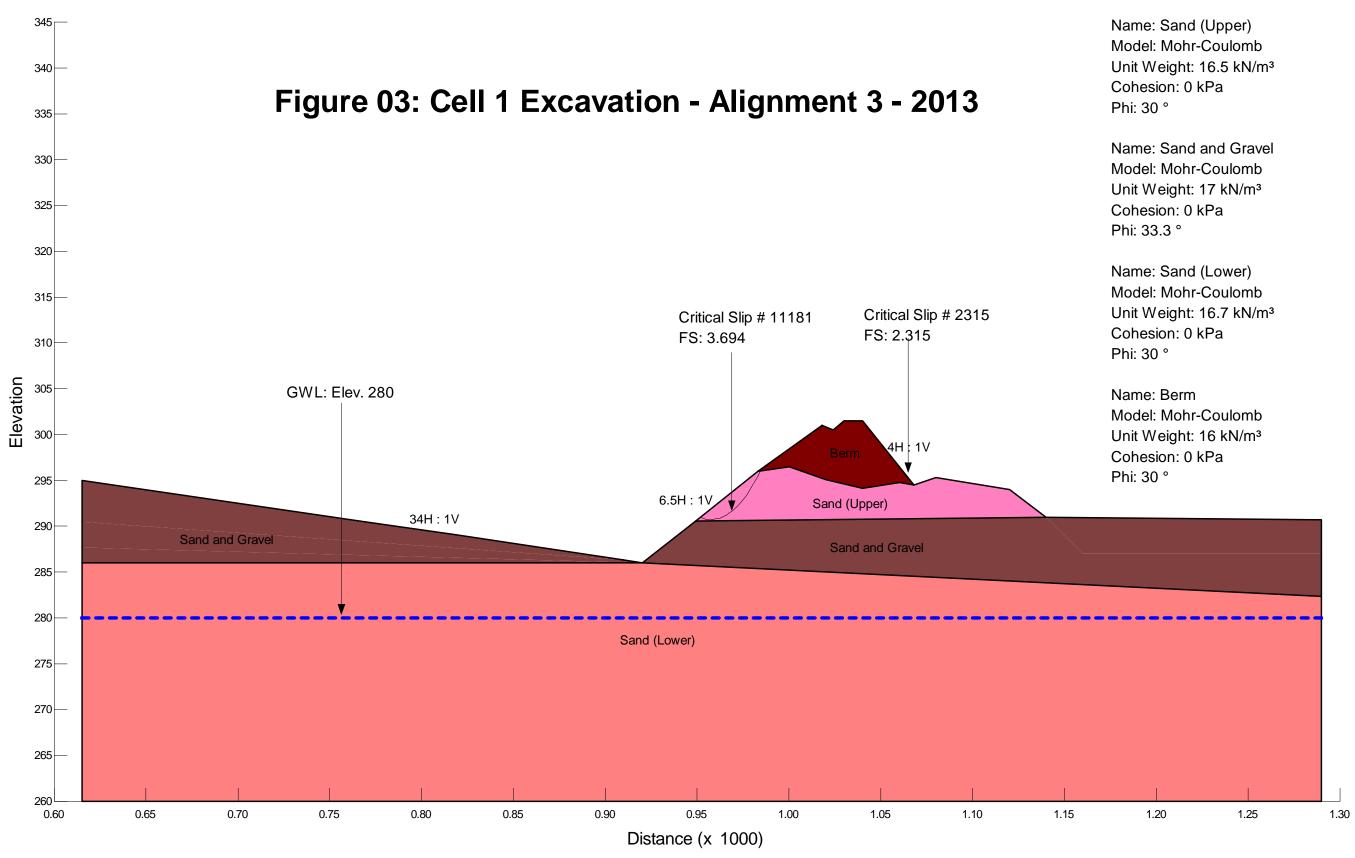
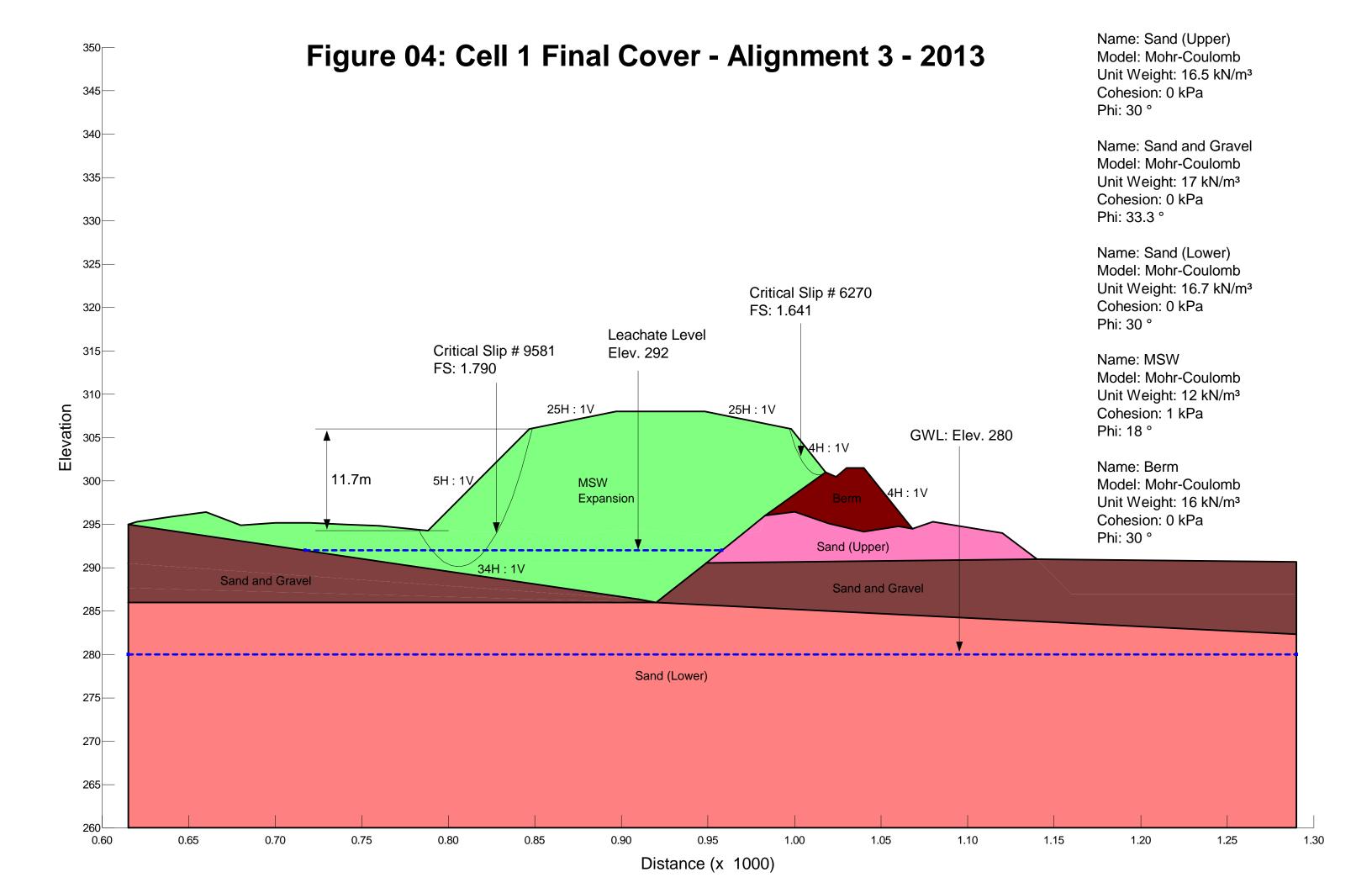





Figure 02: Cell 1 Final Cover - Section 1+400 - 2014

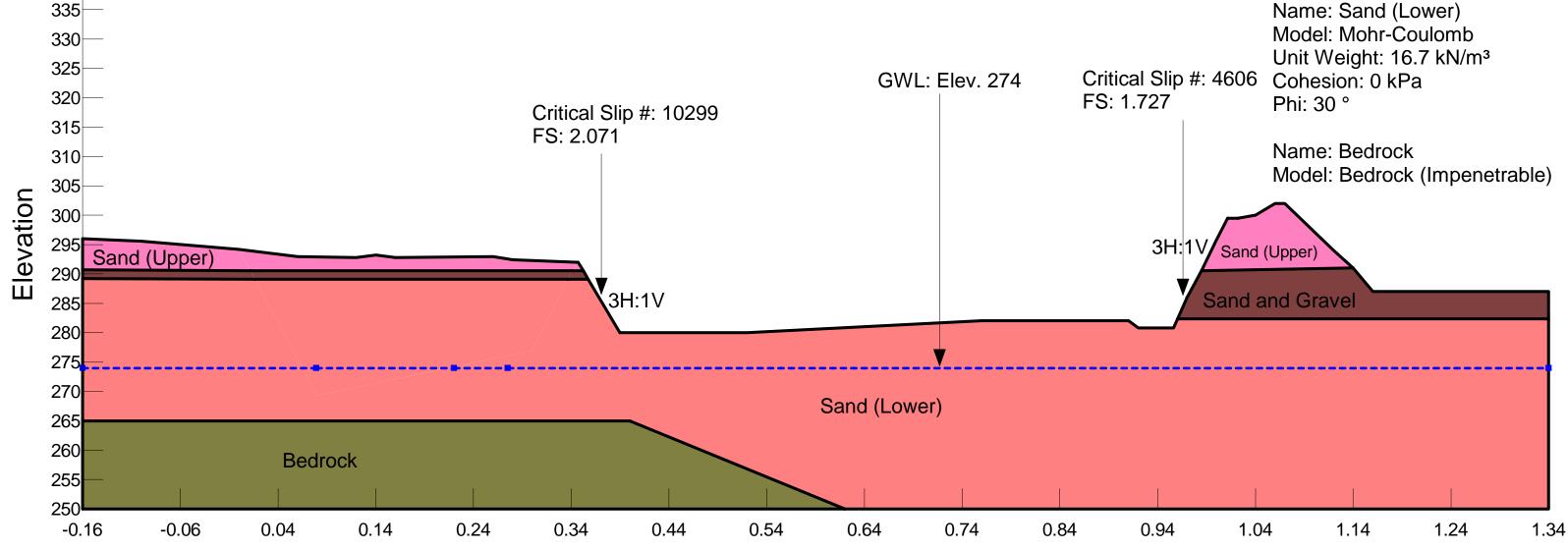
Note: Berm slip surface not visible due to scale exaggeration

Figure 05: Cell 1A Complete Mining - Section A-A - 2011

340┌

Note: Slip surface not visible due to scale exaggeration

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³


Cohesion: 0 kPa

Phi: 30 °

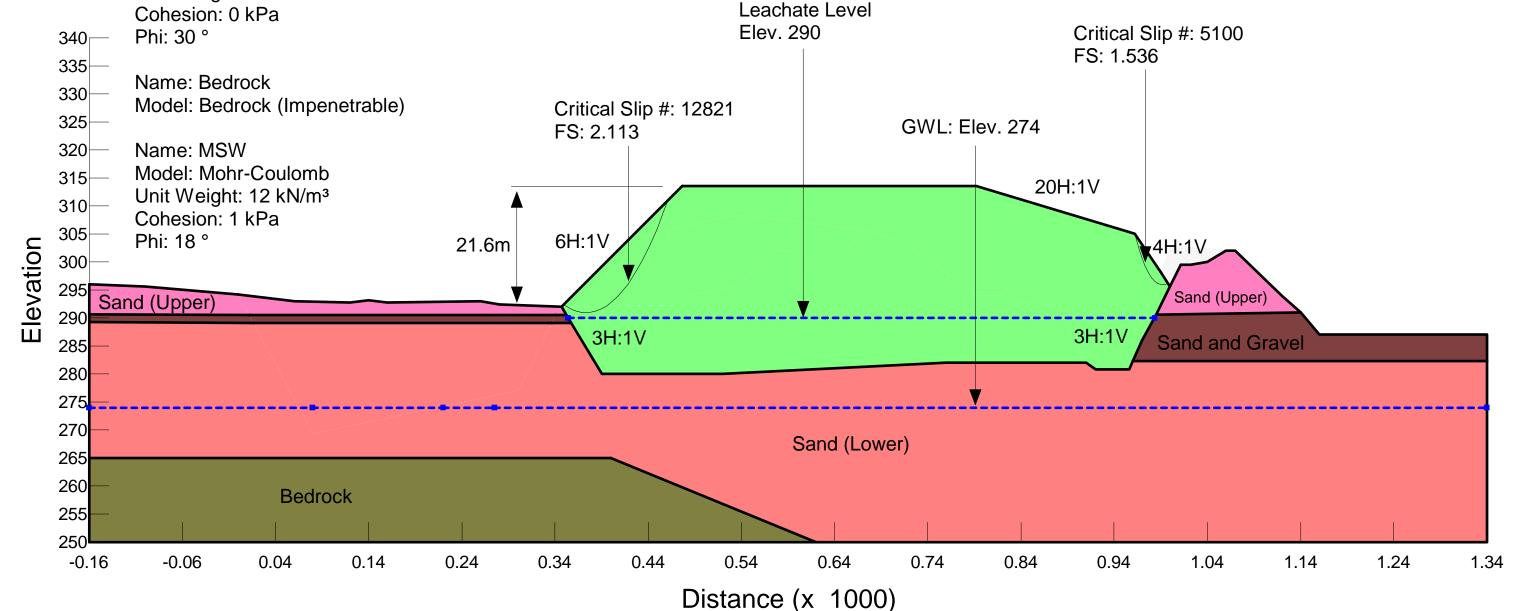
Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

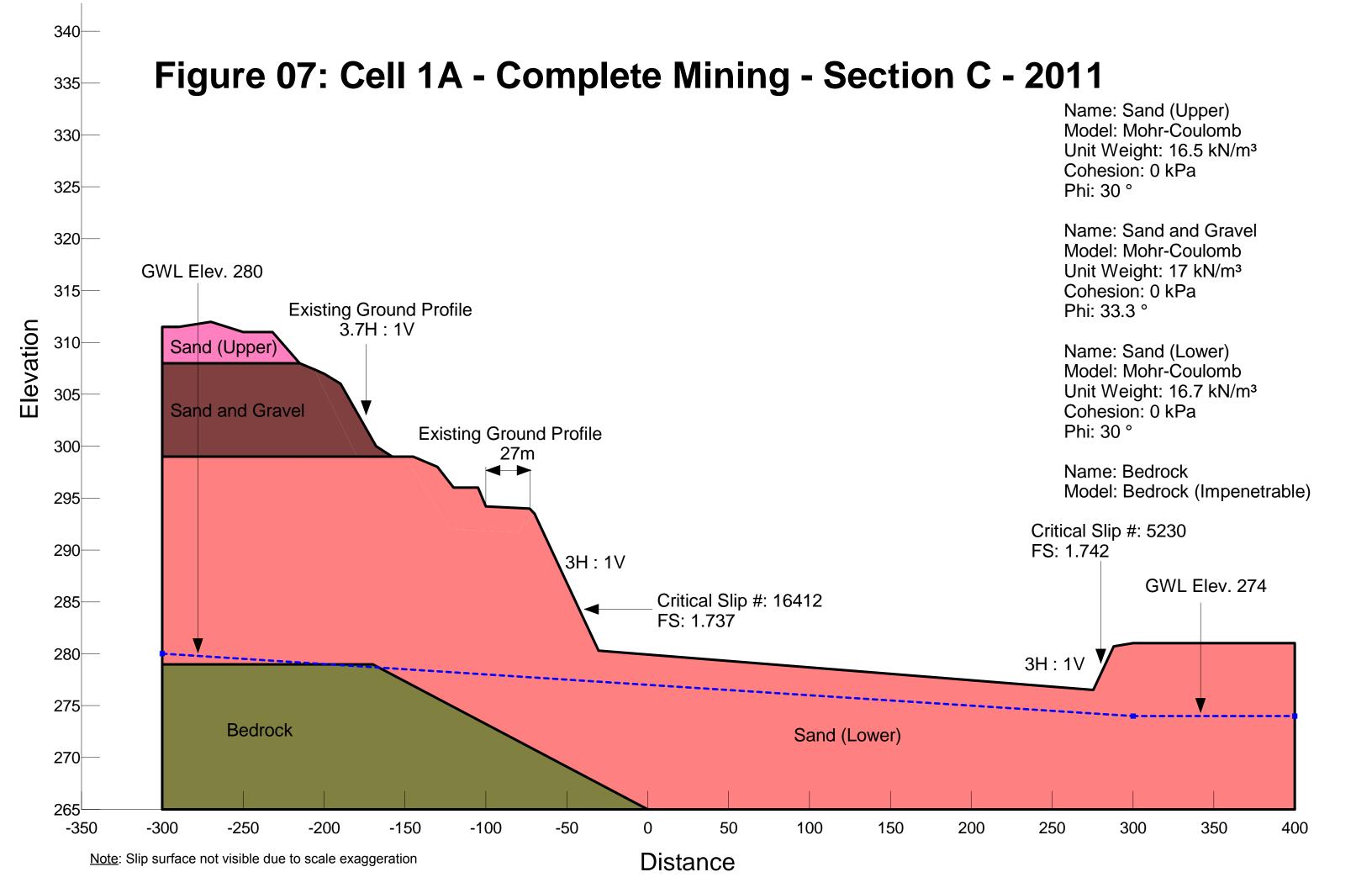
Phi: 33.3 °

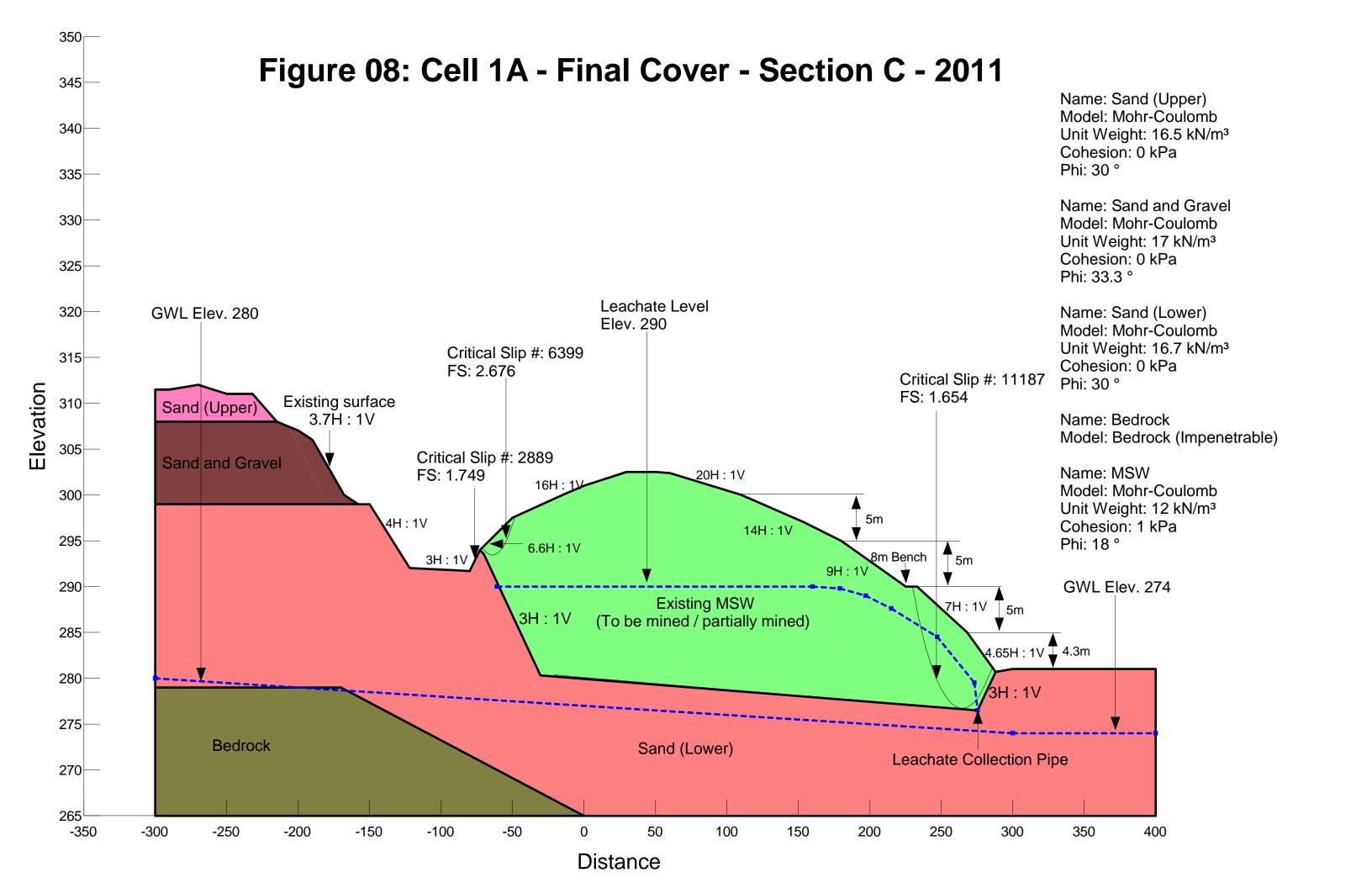
Name: Sand (Lower)

Distance (x 1000)

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³


Figure 06: Cell 1A Final Cover - Section A-A - 2011


Cohesion: 0 kPa Phi: 30 °


Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Name: Sand (upper) Model: Mohr-Coulomb

Unit Weight: 16.5 kN/m³

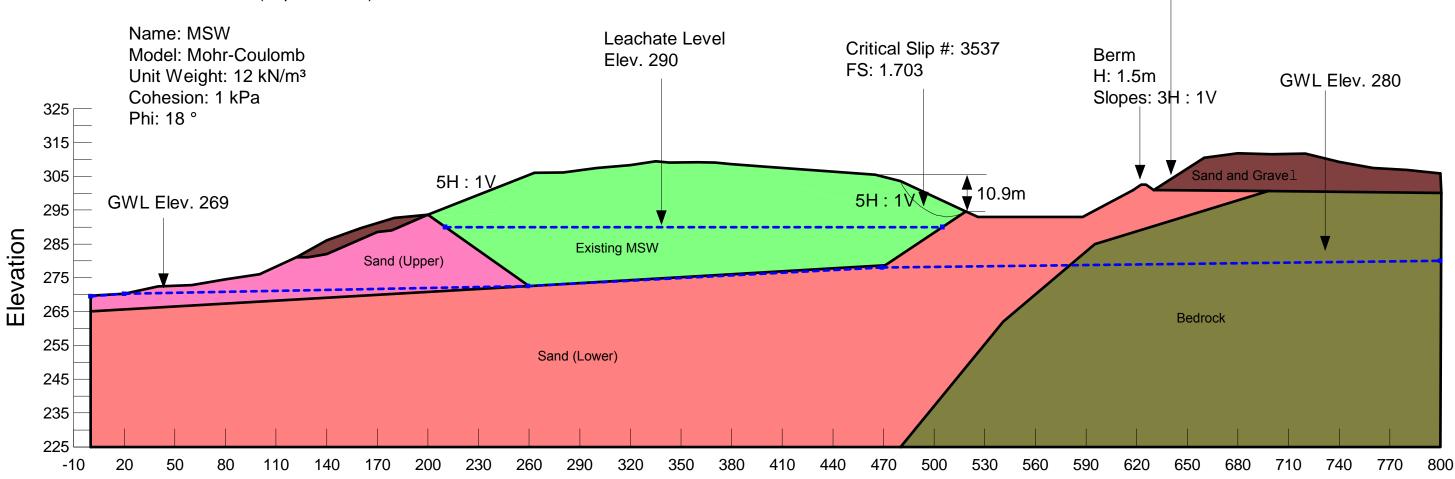
Cohesion: 0 kPa

Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °

Name: Sand (lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³


Cohesion: 0 kPa

Phi: 30 °

Name: Bedrock

Model: Bedrock (Impenetrable)

Note: Slip surface in sand and gravel unit not visible due to scale exaggeration

Distance

Figure 09: Cell 2 Excavation - Alignment 2A - 2013

Slope: 3H: 1V

FS: 2.072

Critical Slip #: 16693

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

Cohesion: 0 kPa

Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Cohesion: 0 kPa

Phi: 30 °

Name: Bedrock

Model: Bedrock (Impenetrable)

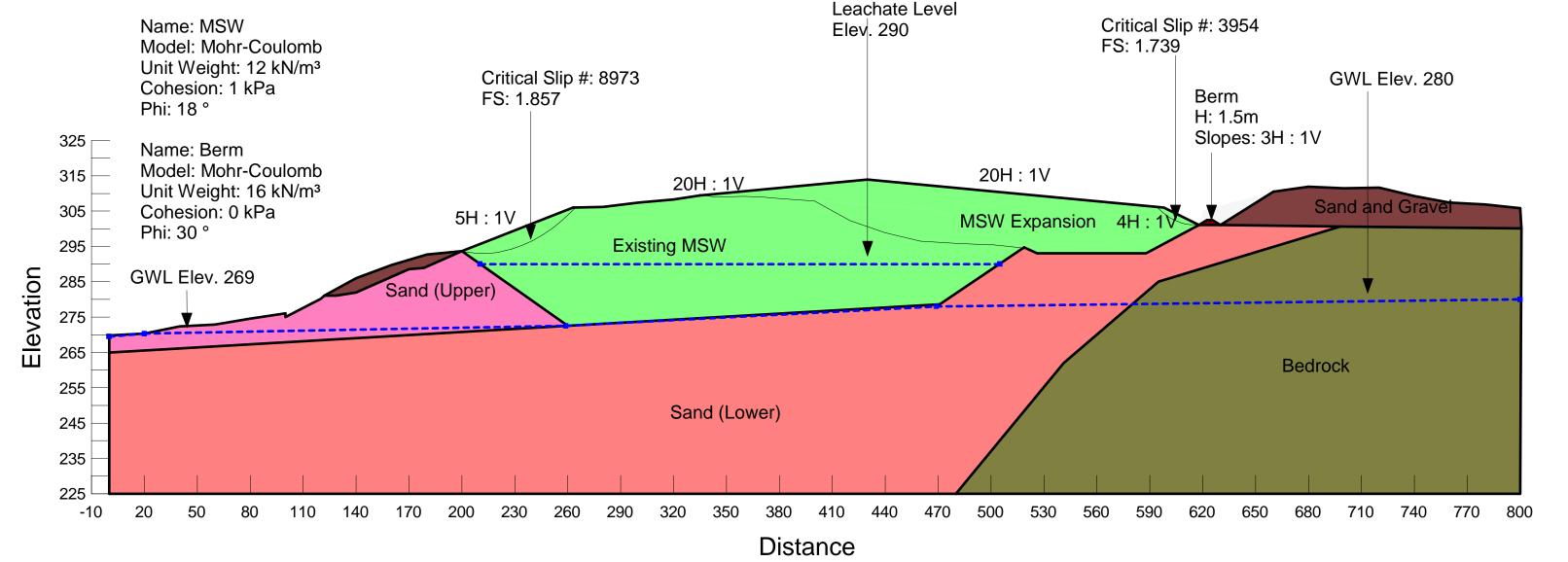
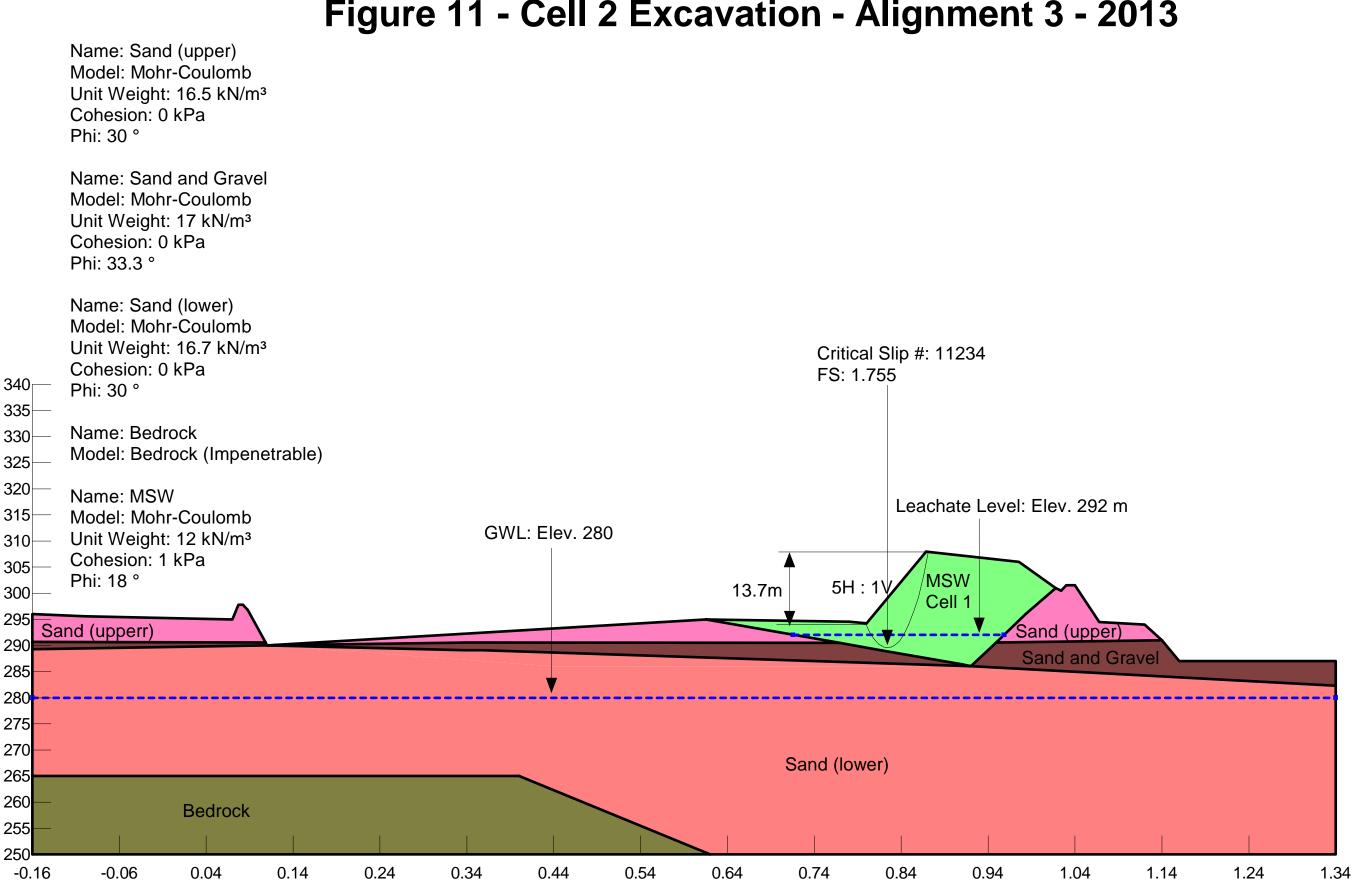



Figure 10: Cell 2 - Final Cover - Alignment 2A - 2013

Figure 11 - Cell 2 Excavation - Alignment 3 - 2013

Distance (x 1000)

Elevation

Name: Sand (upper)
Model: Mohr-Coulomb
Unit Weight: 16.5 kN/m³

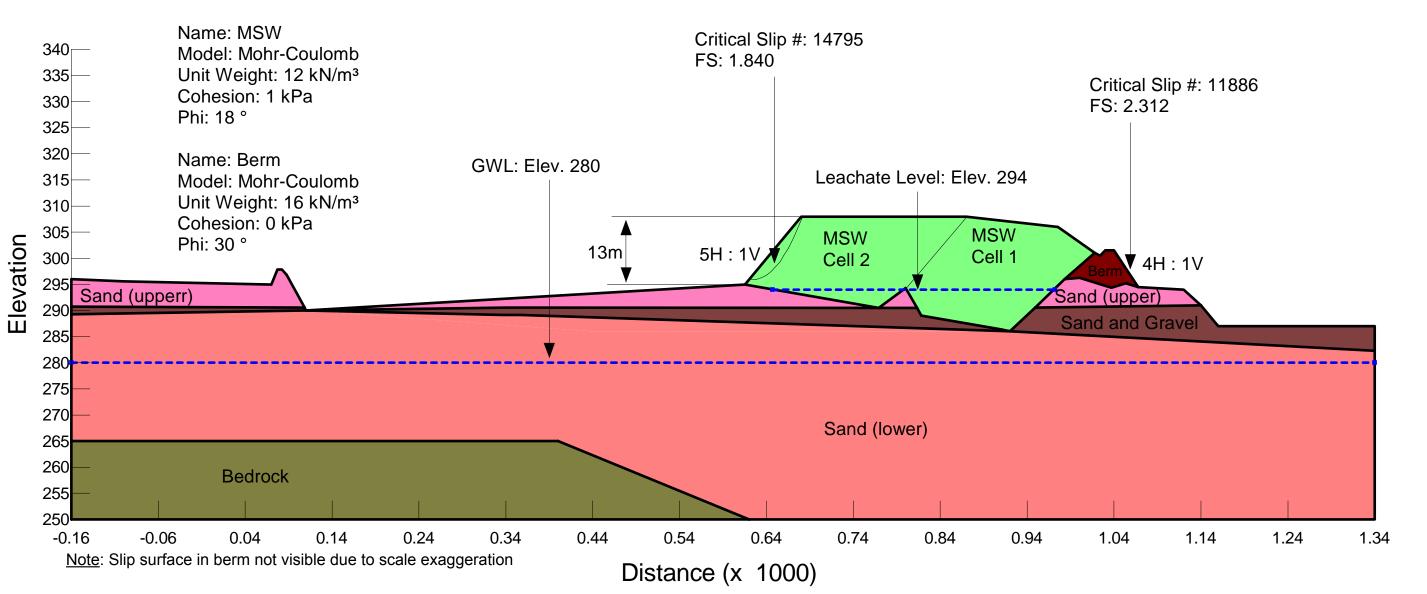
Figure 12: Cell 2 Final Cover - Alignment 3 - 2013

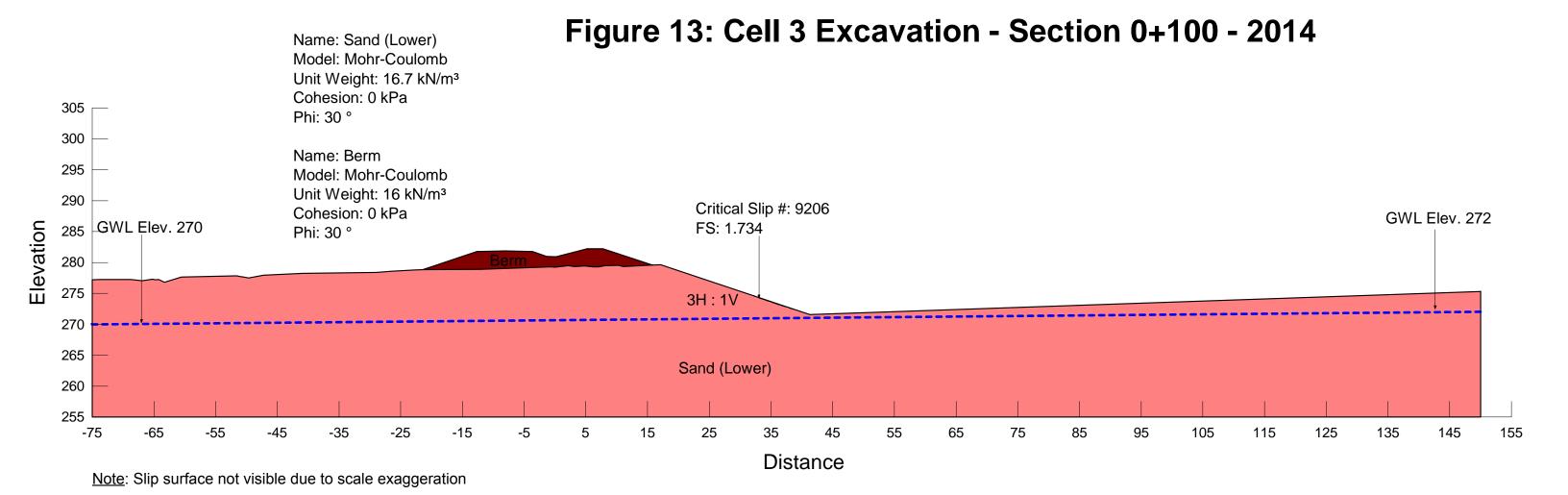
Cohesion: 0 kPa

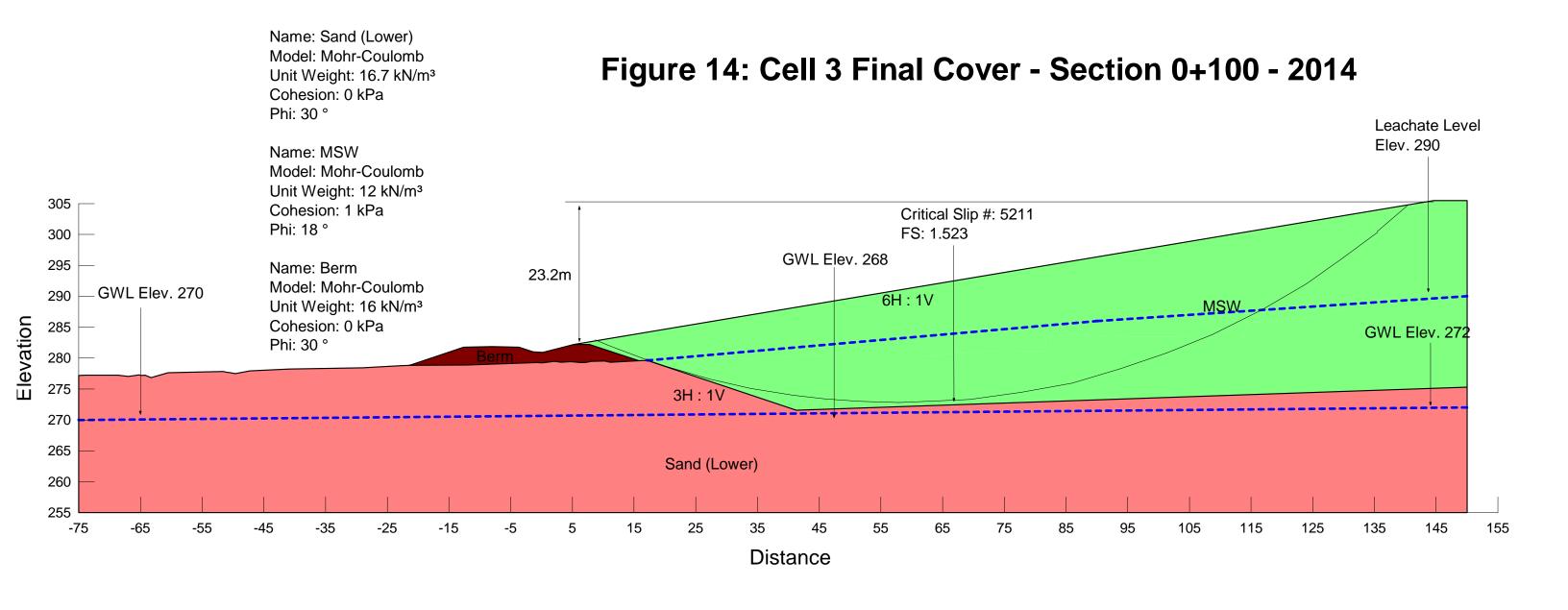
Phi: 30 °

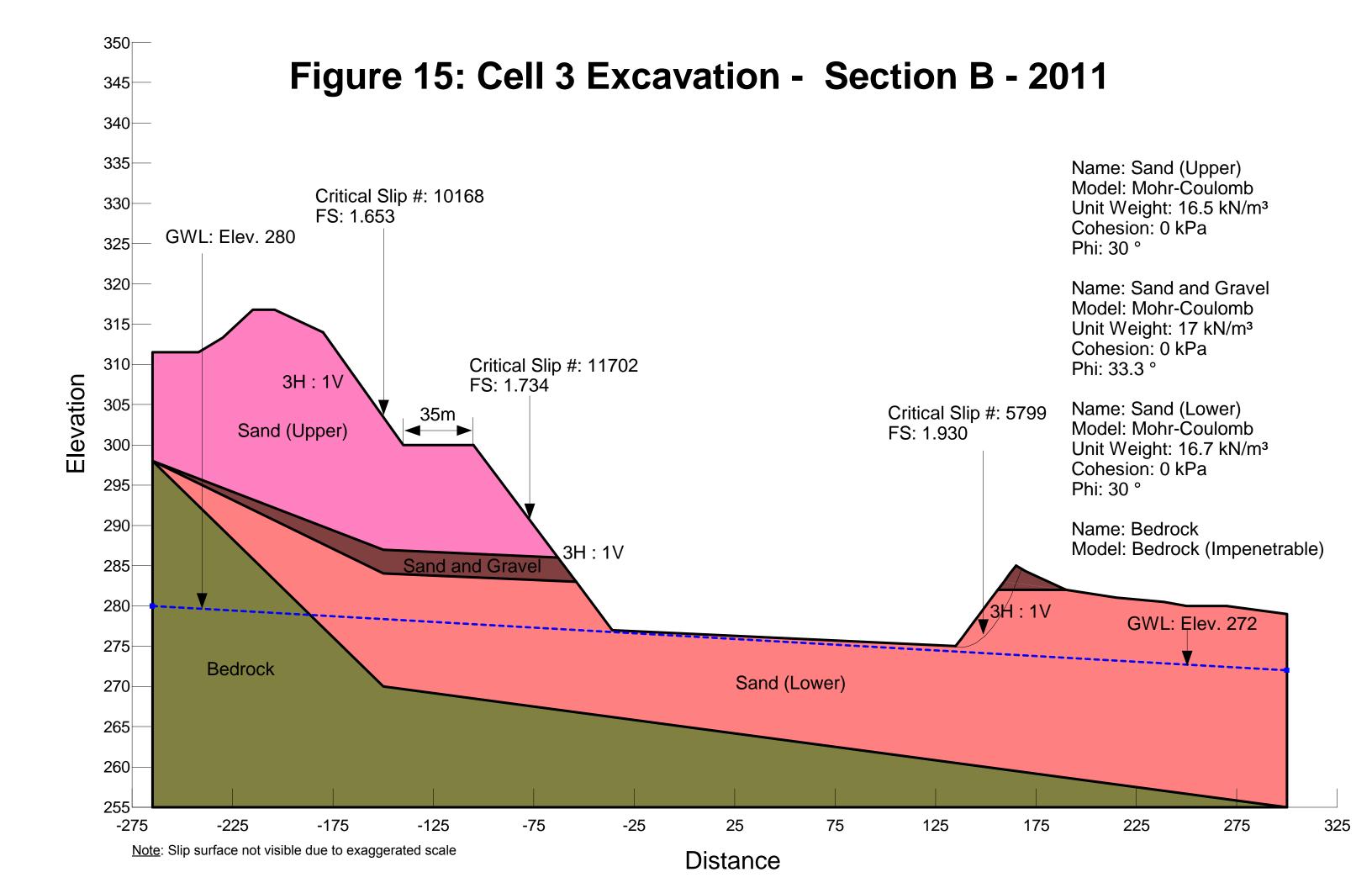
Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °


Name: Sand (lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³


Cohesion: 0 kPa


Phi: 30°


Name: Bedrock

Model: Bedrock (Impenetrable)

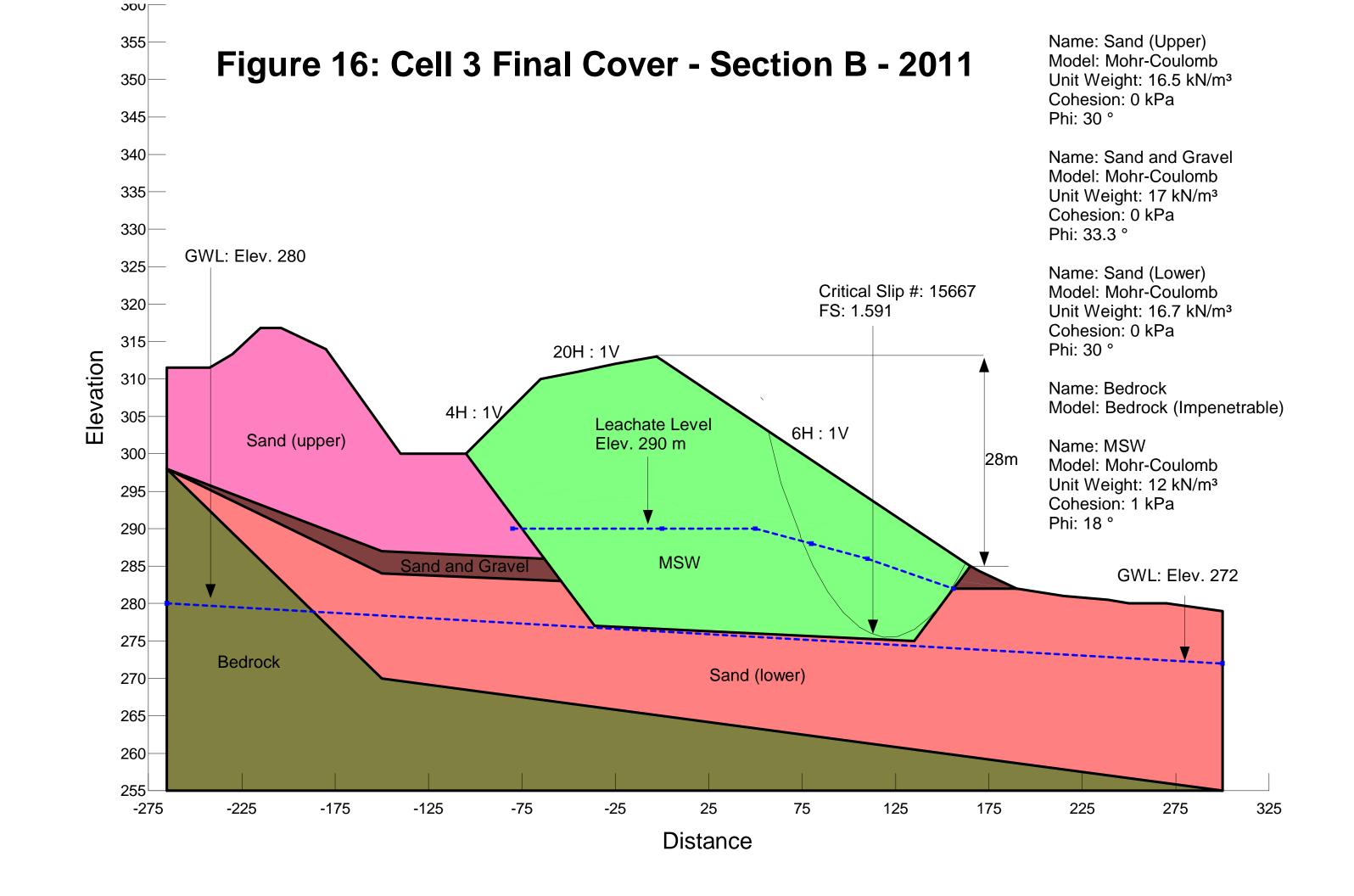
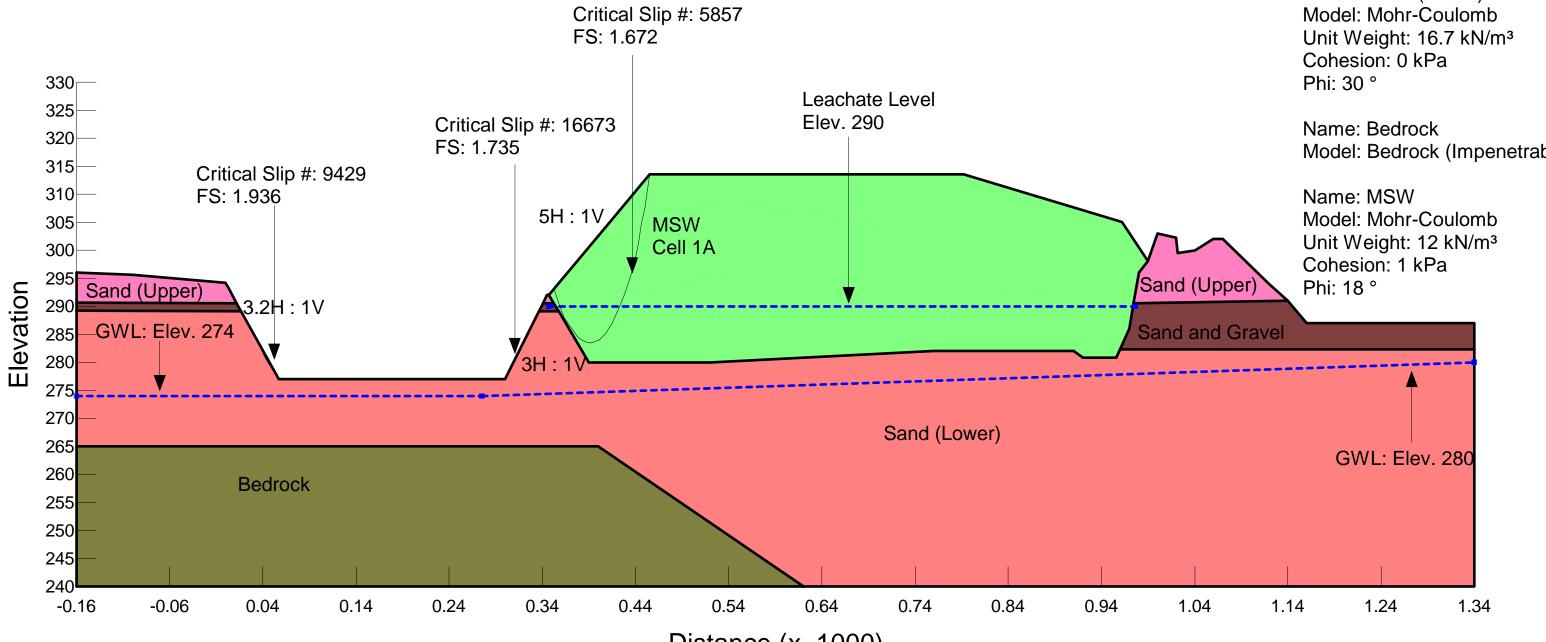


Figure 17: Cell 4 Excation - Section A-A - 2011

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

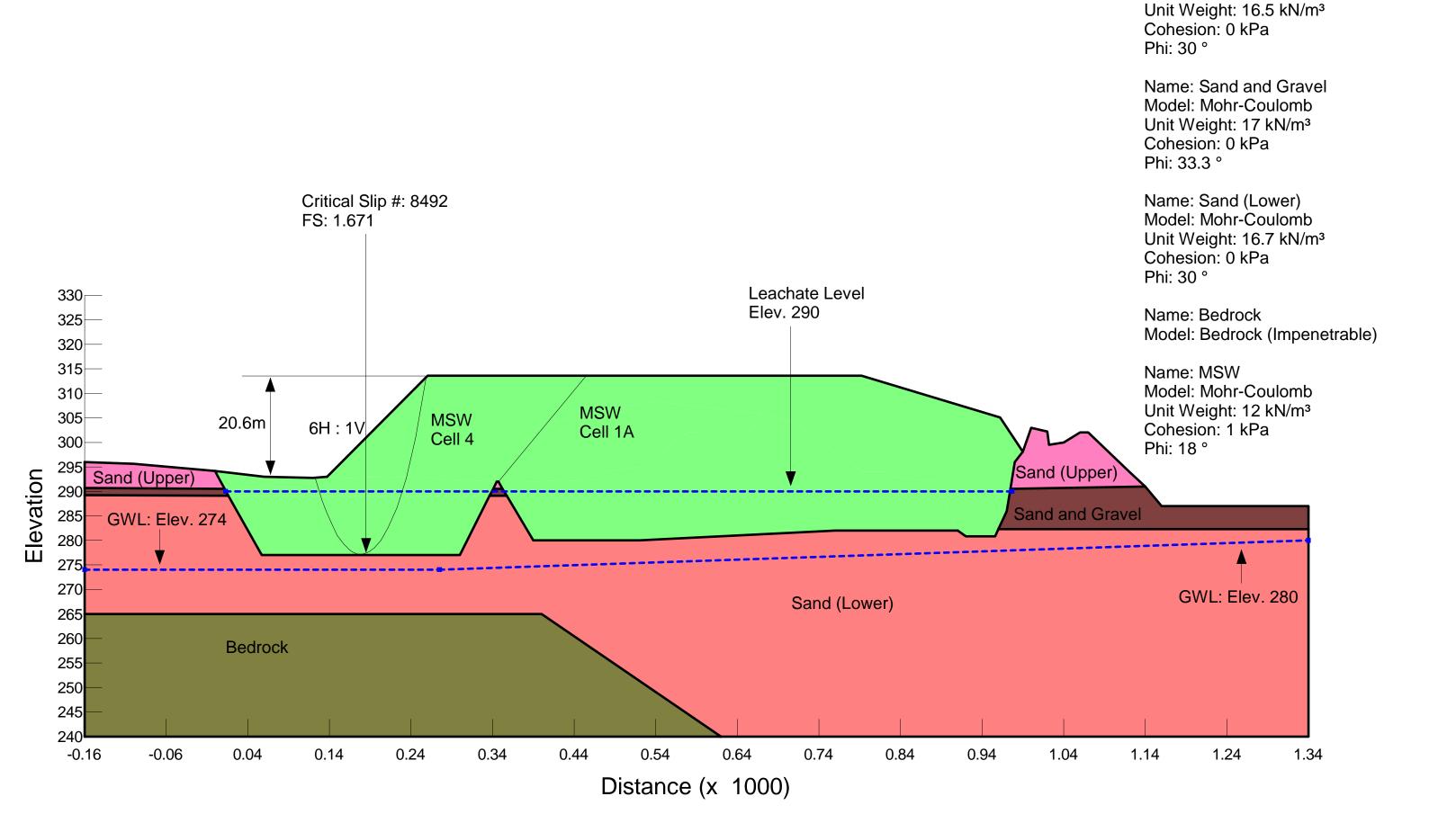
Cohesion: 0 kPa


Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³


Model: Bedrock (Impenetrable)

Distance (x 1000)

Figure 18: Cell 4 Final Cover - Section A-A - 2011

Name: Sand (Upper) Model: Mohr-Coulomb

Name: Sand (Upper) Figure 19: Cell 4 Excavtion - Section C - 2011 Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa Phi: 30 ° Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Critical Slip #: 15680 Phi: 33.3 ° FS: 2.036 Name: Sand (Lower) Critical Slip #: 5676 Model: Mohr-Coulomb FS: 2.078 Unit Weight: 16.7 kN/m³ Cohesion: 0 kPa 310 Sand (Upper) Leachate Level Phi: 30 ° Elev. 290 Name: Bedrock Sand and Gravel 3H:1V Model: Bedrock (Impenetrable) Name: MSW Model: Mohr-Coulomb 4H:1V 3H:1V Unit Weight: 12 kN/m³ Cohesion: 1 kPa Sand (Lower) Phi: 18 ° MSW Cell 1A GWL Elev. 280 GWL Elev. 274

Sand (Lower)

150

200

250

300

350

400

100

Note: Slip surface not visible in sand and gravel unit due to exaggerated scale

-150

-100

-50

Bedrock

-200

-250

335—

330

325

320

315

305

300

295

290

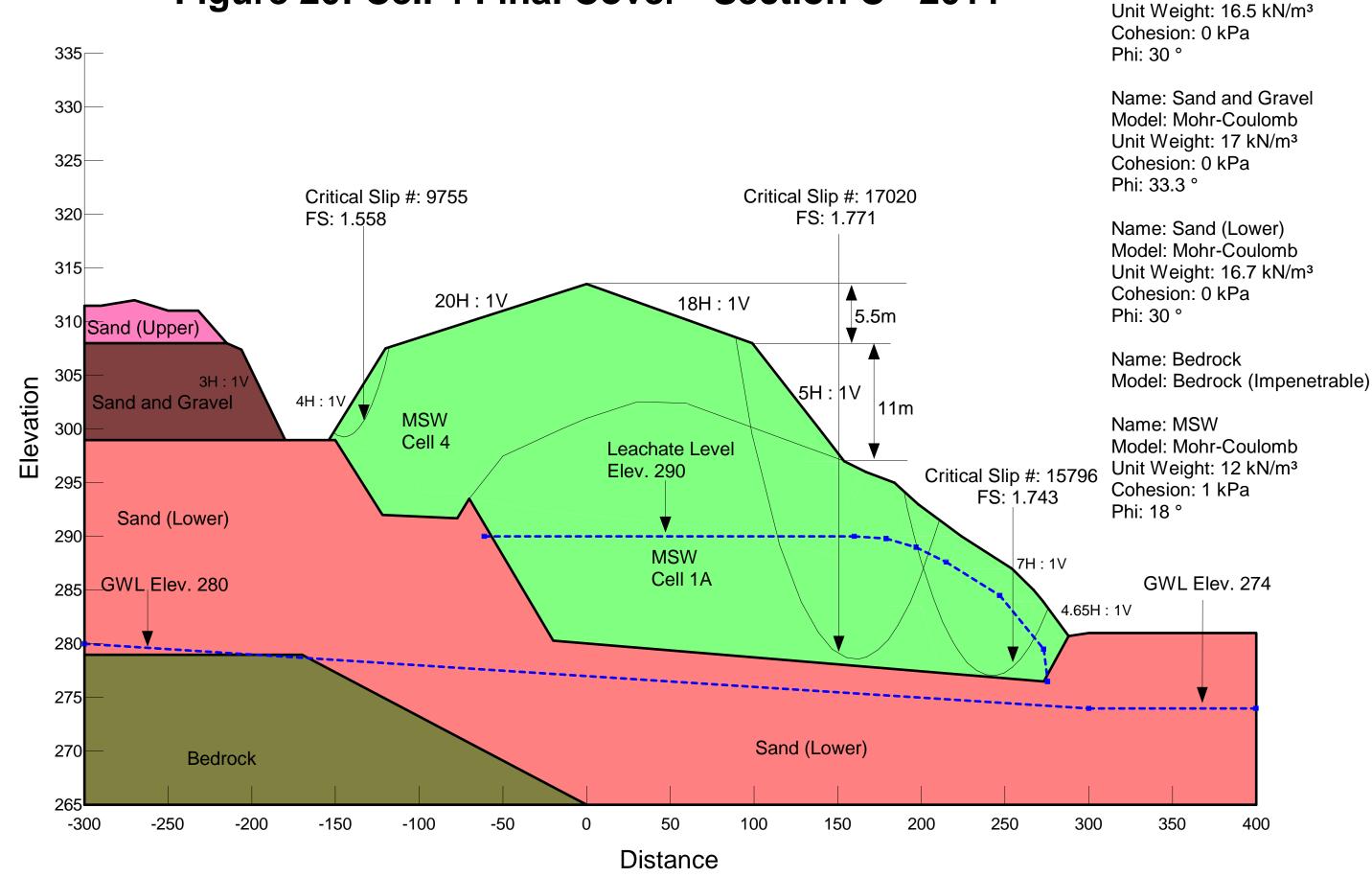
285

280

275

270

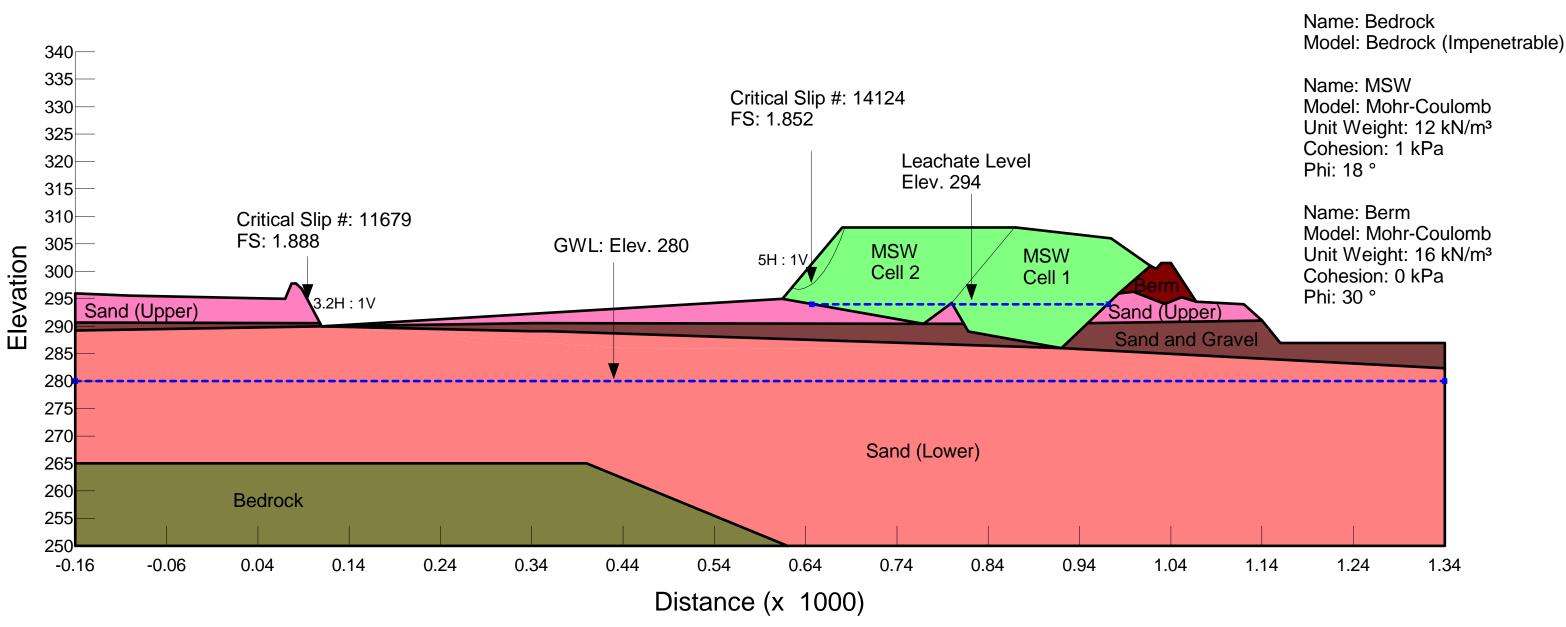
265 -300


Elevation

Distance

50

0


Figure 20: Cell 4 Final Cover - Section C - 2011

Name: Sand (Upper)

Model: Mohr-Coulomb

Figure 21: Cell 5 Excavation - Alignment 3 - 2013

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

Cohesion: 0 kPa

Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Cohesion: 0 kPa

Phi: 30 °

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

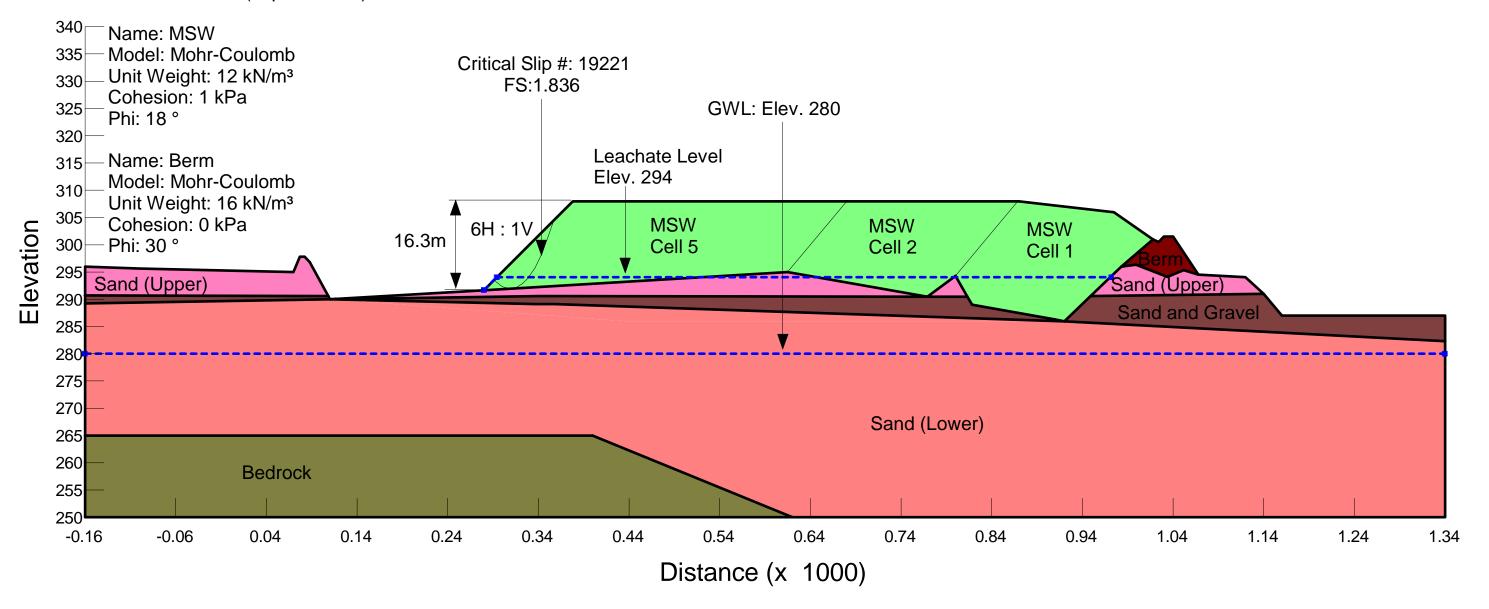
Figure 22: Cell 5 Final Cover - Alignment 3 - 2013

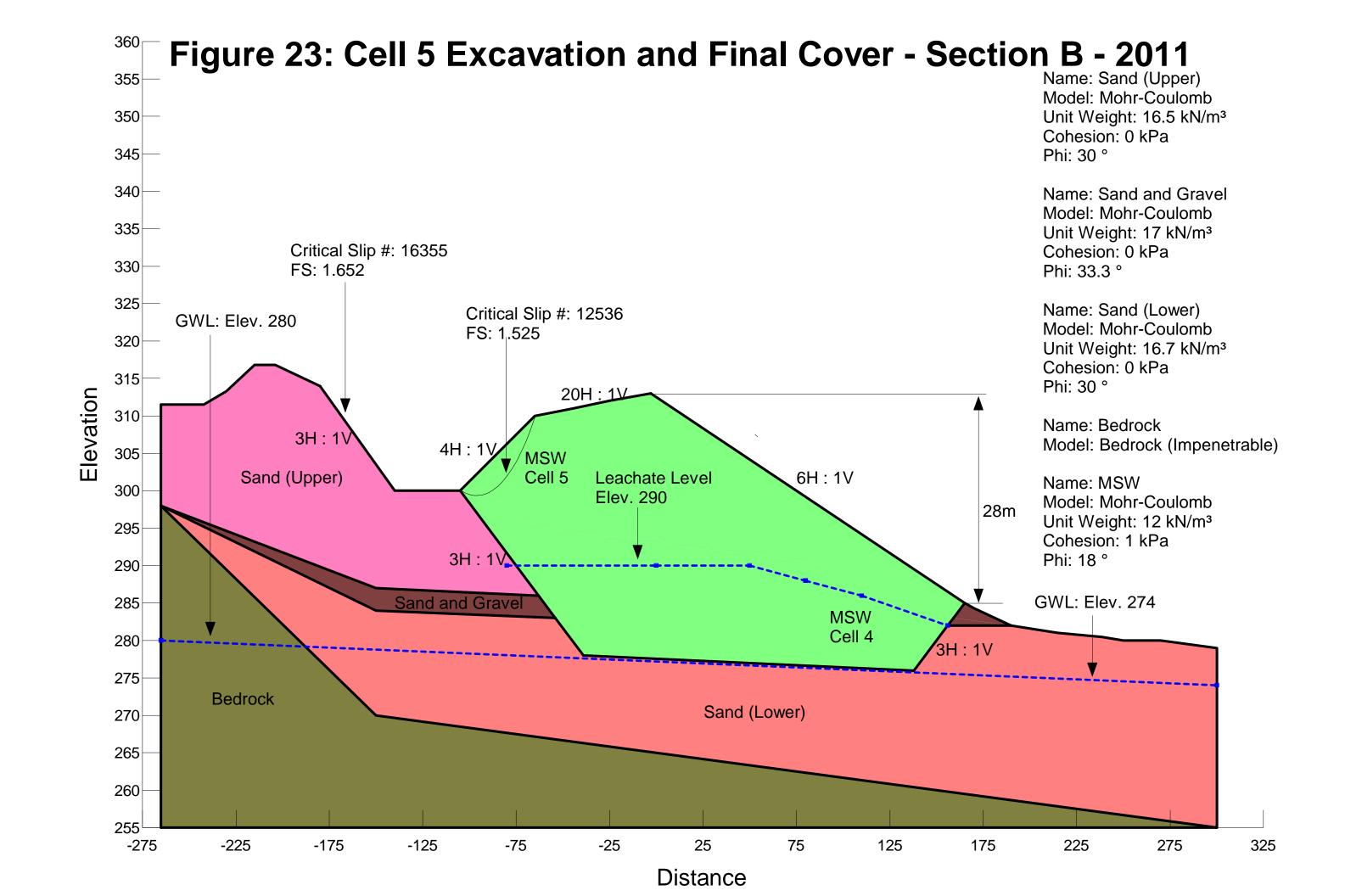
Cohesion: 0 kPa

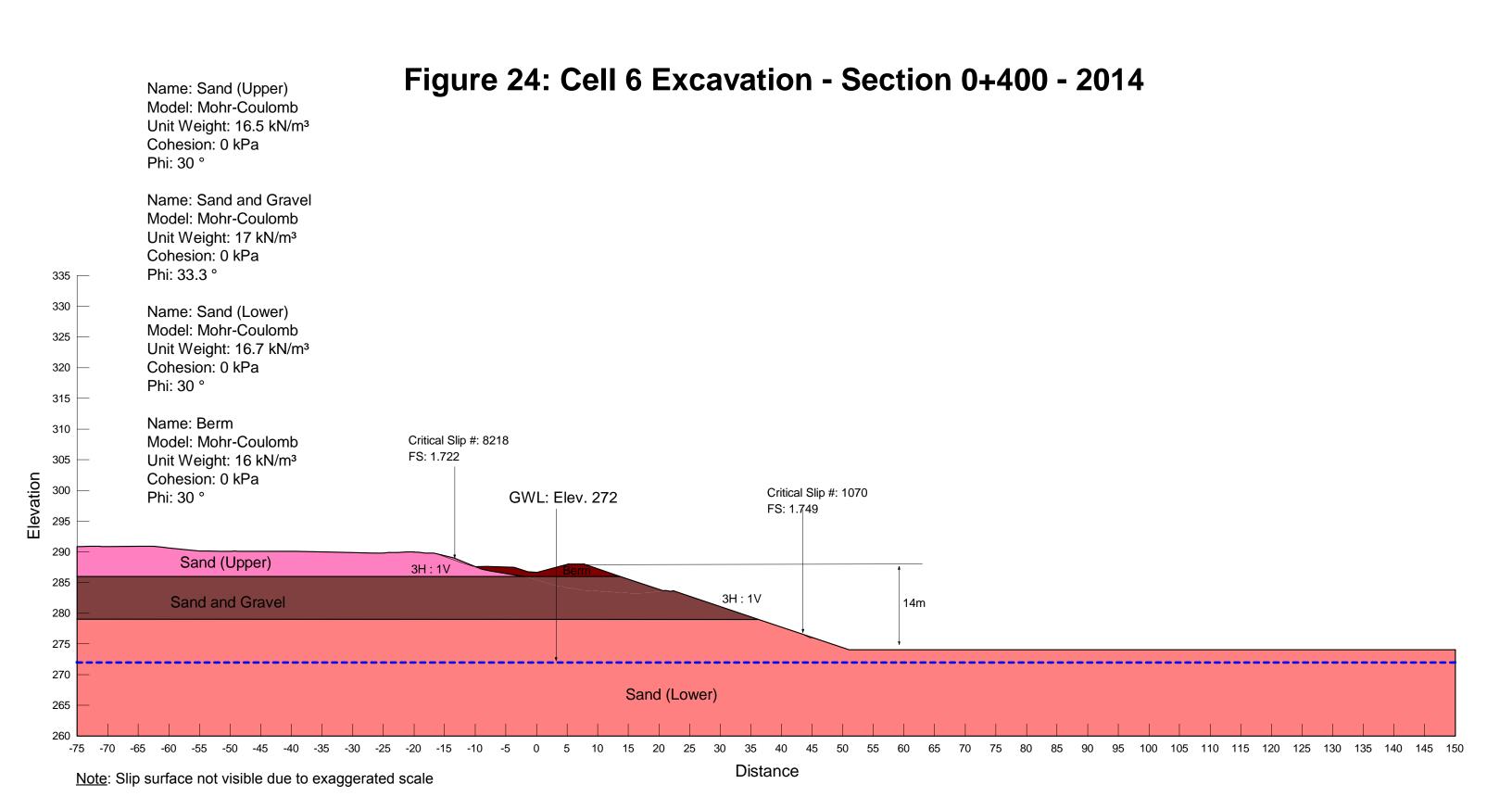
Phi: 30°

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °


Name: Sand (Lower)
Model: Mohr-Coulomb
Unit Weight: 16.7 kN/m³

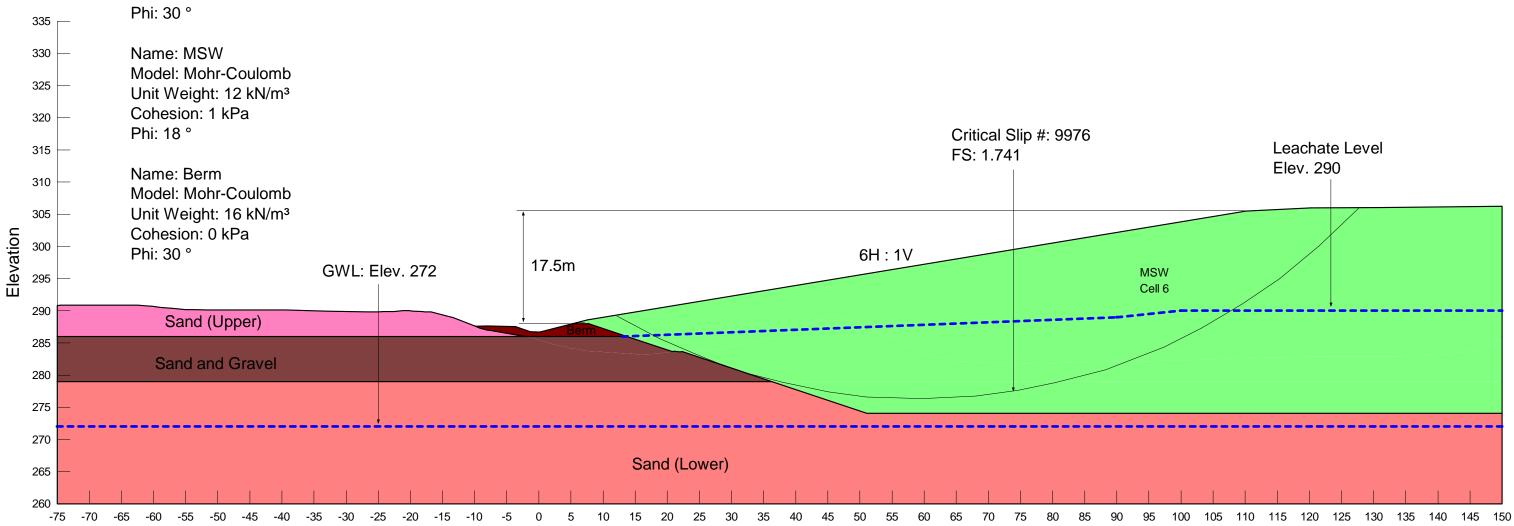

Cohesion: 0 kPa


Phi: 30 °

Name: Bedrock

Model: Bedrock (Impenetrable)

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³


Cohesion: 0 kPa

Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

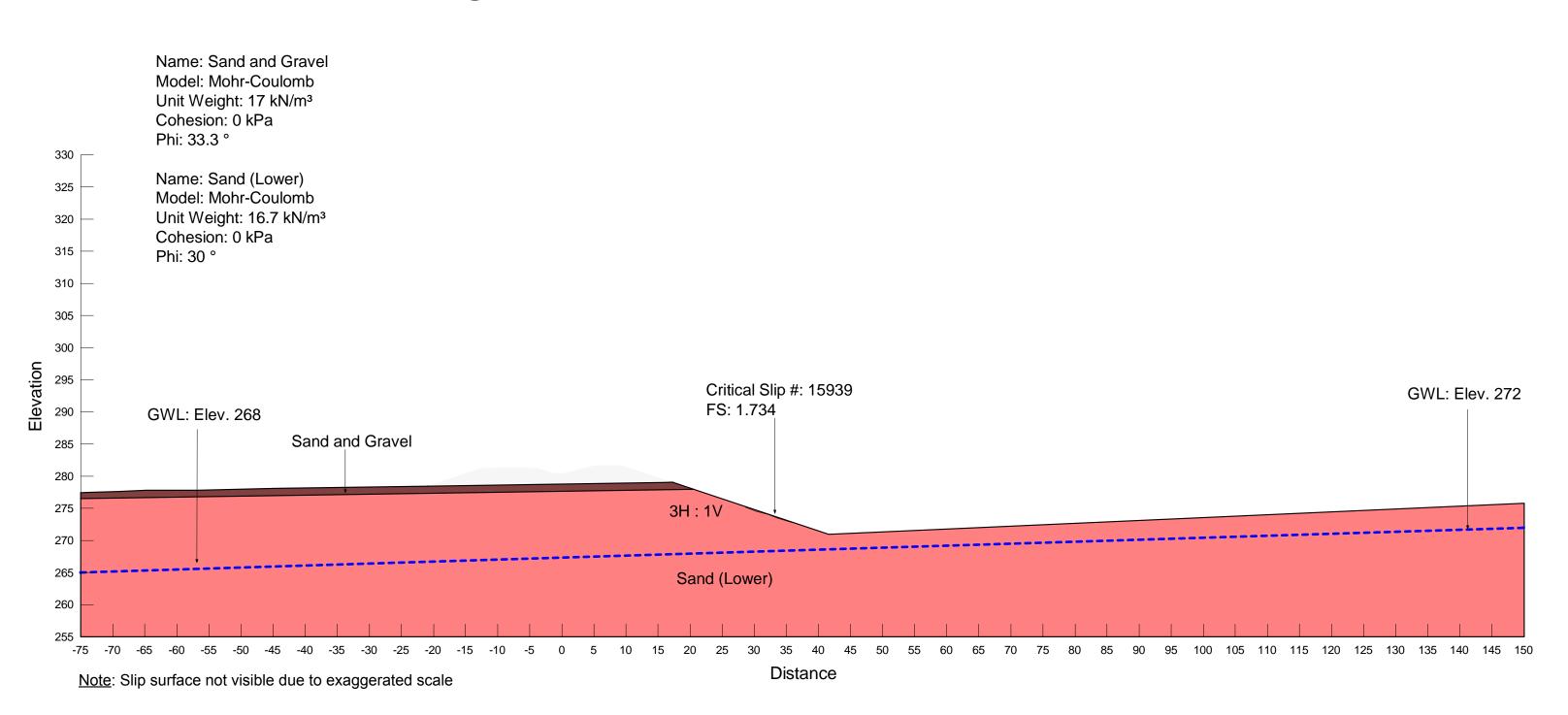
Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

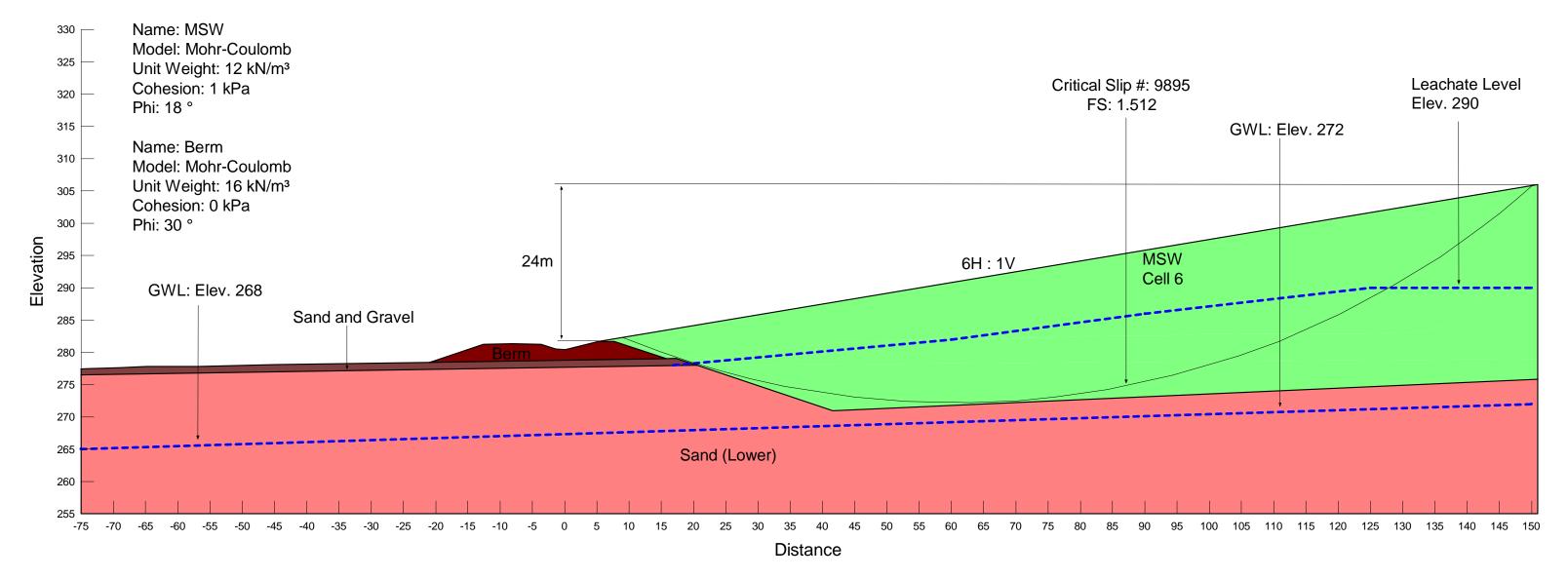
Cohesion: 0 kPa

Distance

Figure 25: Cell 6 Final Cover - Section 0+400 - 2014

Figure 26: Cell 6 Excavtion - Section 0+200 - 2014




Figure 27: Cell 6 Final Cover - Section 0+200 - 2014

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

Name: Sand (Lower)
Model: Mohr-Coulomb
Unit Weight: 16.7 kN/m³

Cohesion: 0 kPa

Phi: 30 °

340—

Critical Slip #: 10455

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

Cohesion: 0 kPa

Phi: 33 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 15 kN/m³ Cohesion: 0 kPa

Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Cohesion: 0 kPa

Phi: 30 °

Name: Bedrock

Model: Bedrock (Impenetrable)

Name: MSW

Model: Mohr-Coulomb

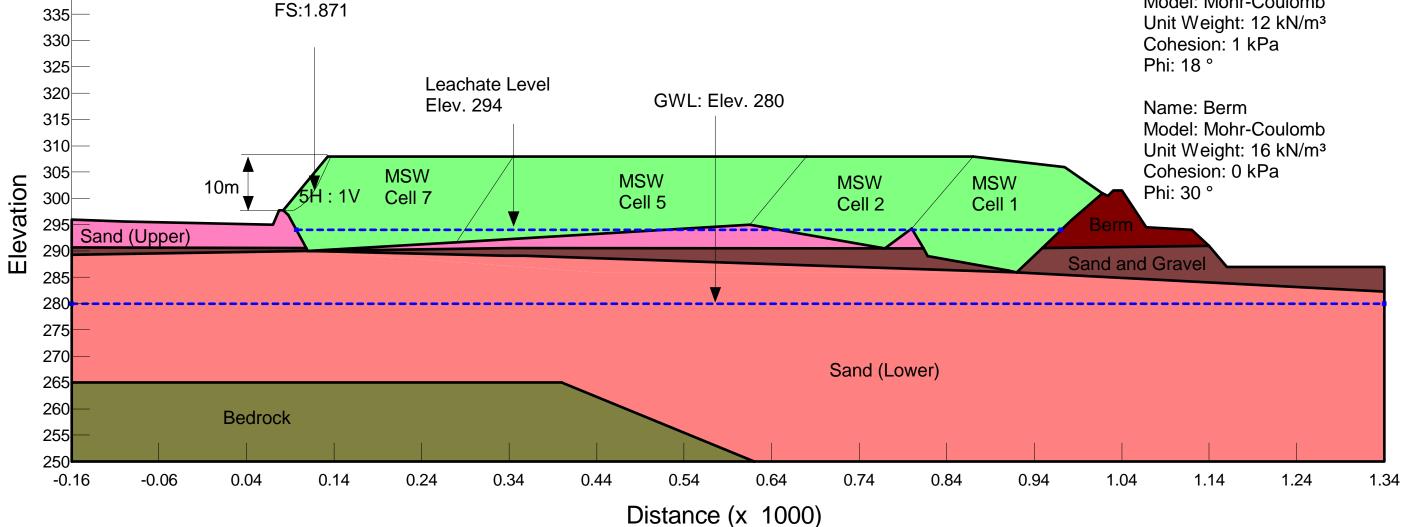


Figure 29: Cell 7 Excavation - Section 0+700 - 2014

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa

Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Cohesion: 0 kPa

Phi: 30 °

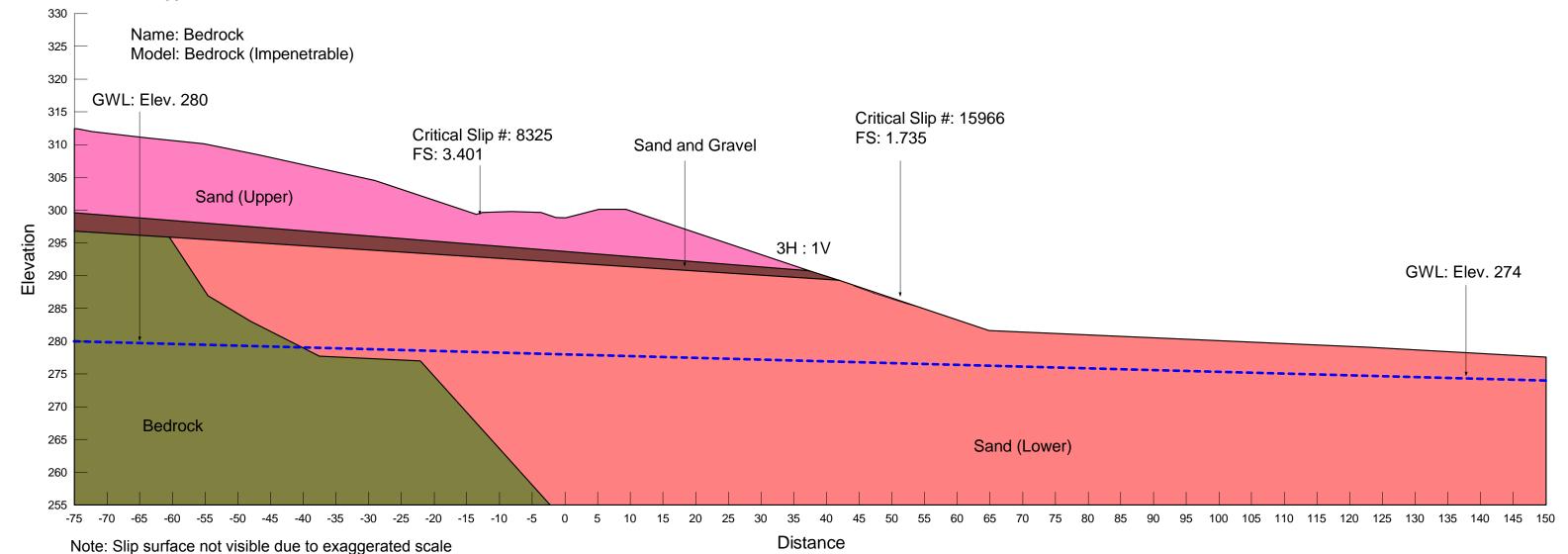
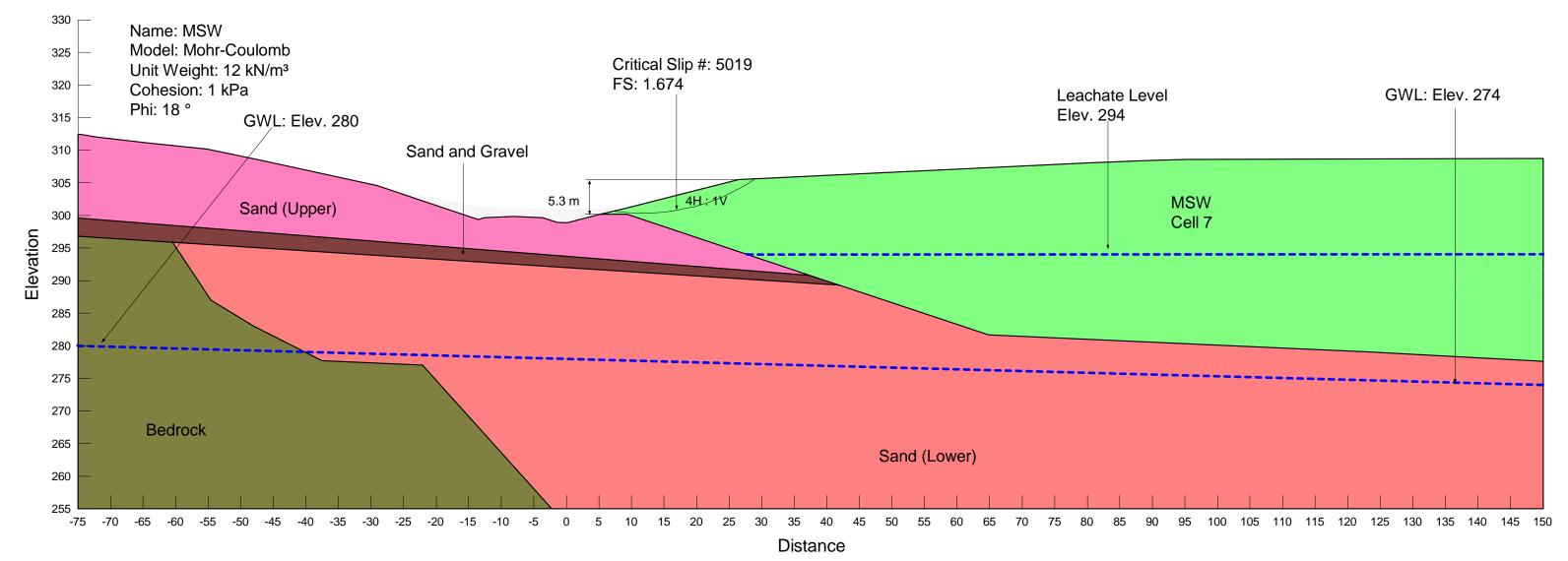


Figure 30: Cell 7 Final Cover - Section 0+700 - 2014

Name: Sand (Upper)
Model: Mohr-Coulomb
Unit Weight: 16.5 kN/m³
Cohesion: 0 kPa

Cohesion: 0 Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa


Phi: 33.3 °

Name: Sand (Lower)
Model: Mohr-Coulomb
Unit Weight: 16.7 kN/m³
Cohesion: 0 kPa

Phi: 30 °

Name: Bedrock

Model: Bedrock (Impenetrable)

