

Environment

City of Sault Ste. Marie

Landfill Expansion – Geotechnical Report

Prepared by:

AECOM		
99 Commerce Drive	204 477 5381	tel
Winnipeg, MB, Canada R3P 0Y7	204 284 2040	fax
www.aecom.com		

Project Number: 60117627 (402.19.1)

Date: June, 2014

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");

represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;

may be based on information provided to Consultant which has not been independently verified;

has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;

must be read as a whole and sections thereof should not be read out of such context;

was prepared for the specific purposes described in the Report and the Agreement; and

in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

June 19th, 2014

Ms. Catherine Taddo, P. Eng. Engineering Department City of Sault Ste. Marie 99 Foster Drive, 5th Floor Sault Ste. Marie, Ontario P6A 5N1

Dear Ms. Taddo:

Project No: 60117627 (402.19.1)

Regarding: Sault Ste. Marie Landfill Expansion – Geotechnical Report

AECOM Canada Ltd. (AECOM) is pleased to submit our report on the above referenced project. If you have any questions please do not hesitate to contact Zeyad Al-Hayazai, P.Eng. directly at 204 928 9221 or Rick Talvitie, P.Eng. at 705 942 2612.

Sincerely, **AECOM Canada Ltd.**

R. V. Fyplichi

Ron Typliski, P.Eng. Vice President, Environment Canada West Region

ZS:CM Encl. cc:

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
2	1	City of Sault Ste. Marie
2	1	AECOM Sault Ste. Marie
1	1	File
1		Faris Khalil
1		Zeyad Al-Hayazai

Revision Log

Revision #	Revised By	Date	Issue / Revision Description
1	Z. Shukri	June 18, 2014	Final Report

AECOM Signatures

Report Prepared By:

Zeyad Al-Hayazai, M.Sc, P.Eng. Senior Geotechnical Engineer

Report Reviewed By:

Faris Khalil, M.Sc. P.Eng., PMP Manager Geotechnical Engineering

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List

			Page
1	Intro	duction	1
2	Site	Description	1
	2.1	Expansion Development Plan	2
3	Geot	echnical Investigation	2
	3.1	Field Work	2
	3.2	Subsurface Conditions	
	3.3	Groundwater Condition	
4	Geo	echnical Assessment	5
	4.1	Settlement	5
	4.2	Bearing Capacity	6
	4.3	Stability Assessment	
		4.3.1 Analysis Parameters	6
		4.3.2 Analysis Results	
	4.4	Excavation	9
	4.5	Drainage	9
	4.6	Excavated Material	9
	4.7	Berms and Roadway Embankment	
5	Clos	ure	10

List of Tables

Table 01:	Summary of GWL Monitoring	.5
Table 02:	Strength Parameters for Stability Assessment	.7
	Summary of Slope Stability Analysis	

Appendices

Appendix A Photos Appendix B Landfill Plan and Sections Appendix C Test Hole Location Plan Appendix C Test Hole Location Plan Appendix D Test Hole Logs Appendix E Laboratory Test Results Appendix F Slope Stability Analysis

1 Introduction

The City of Sault Ste. Marie (The City) retained AECOM to provide geotechnical engineering services for the proposed expansion of the existing landfill facility located north of Fifth Line and west of Highway 17 in the City of Sault Ste. Marie, Ontario. The existing landfill footprint covers an approximate area of 26 hectares. The capped waste embankment height is approximately 19.5 m above existing grade. Different side slope inclinations between 4H:1V and 20H:1V were used in the existing facility. The maximum thickness of the waste material in the existing landfill is estimated to be about 30 m thick.

The geotechnical scope of work for this project consisted of the following tasks:

- Review relevant information and published geotechnical data.
- Develop and complete a geotechnical field investigation program including utility locates, test hole drilling, soil sampling, instrumentation installation and laboratory testing.
- Complete geotechnical engineering studies including stability assessment for possible configurations during the service life of the facility and for the final configuration.
- Prepare a geotechnical report to document the geotechnical investigation, discuss geotechnical concerns and provide geotechnical recommendations related to the design and construction of the proposed expansion.

This report documents the 2013 geotechnical field investigation, discusses the geotechnical considerations and provides related geotechnical recommendations in support of the facility expansion. Environmental aspects and any potential impacts from the existing facility or the proposed work are beyond the scope of this report.

2 Site Description

The existing facility is located approximately 800 m northwest of the Fifth Line East and Highway 17 intersection. The proposed expansion is planned to take place on the north and west sides of the existing disposal footprint. Natural ground topography has been altered and the existing site topography varies from gently undulating to steep and hilly with isolated rock outcrops. The site is bordered by the Canon Creek on the north and east sides. Photos for general site view are presented in Appendix A (photos 1 and 2)

The Sault Ste. Marie area is at the southern boundary of the Superior Structural Province of the Canadian Shield and is characterized by bedrock of different geological settings. The physiography of the Sault Ste. Marie area is dictated primarily by the underlying bedrock structure and topography. The surficial soils in the area typically consist of sand and gravelly sand, of varying thickness. The landfill site is characterized by isolated bedrock outcrops, exposed conglomerate faces and sand as surficial material. Test holes drilled in the area confirmed the general surficial geology indicating the soil profile consists of sand, sand and gravel underlain by fine sand and some silt over bedrock.

A review of the existing site information indicates the groundwater flow is generally from north to south and from east to west. Groundwater conditions in the overburden deposits measured during the 2013 investigation support this observation.

2.1 Expansion Development Plan

To achieve the proposed end use development plan, the landfill expansion will be completed in a series of stages or cells involving both below grade and above grade refuse placement. Each cell or stage will be completed to or near final grade prior to moving forward with the next stage. This approach will reduce the extent of surface area exposed at any point in time and therefore reduce the net precipitation infiltration and overall leachate generation rate.

Each stage will generally include site preparation including topsoil stripping, cell excavation, exterior berm construction, compaction and lining of the cell's base soils. A leachate collection system will be installed as required by the design across the cell base. Once a below grade area has been completed, above grade development can then proceed in a series of lifts until the design grades for that area are achieved. Once the above grade area approaches final design grade in one cell, the next cell will be excavated and prepared to receive refuse. This sequence is repeated until all cells or stages have been developed and the final site topography has been reached.

The development stages of the proposed facility expansion are illustrated, in general, in Appendix B. The site has been divided into eight cells/stages to accommodate installation of a liner and leachate collection system across the base of the facility. A liner is also proposed in areas where waste from the expansion area will interface with the existing waste within the approved disposal footprint.

Development is planned to commence in the northeast corner of the site working towards the west along the north perimeter of the footprint and then to the south. Above grade exterior slopes should be formed through berm construction and final grading. Interior areas should be constructed as a series of benches with each bench extending outwards from the exterior berm as a terrace feature. The surface area of these terraces should be limited to prevent the formation of large plateaus with inadequate surface drainage. The terraces should be large enough, however, to allow for efficient landfilling operations.

In addition to the standard cell development, landfill mining is proposed in the southwest quadrant of the existing disposal footprint. Landfill mining involves the excavation of existing disposed waste and cover material, recovering the cover material, installing of a liner and leachate collection system along the original landfill base, and returning the waste to the disposal footprint.

Relevant information on ground profiles, landfill configurations and cross section were compiled to support geotechnical models across the site area. Landfill plan and cross sections used in the stability assessment are attached in Appendix B.

3 Geotechnical Investigation

3.1 Field Work

In the period from June 17th to 24th, 2013, AECOM completed a field based geotechnical investigation. The drilling was completed by TBT Engineering Consulting Group, using a tire mounted CME 750 drill rig equipped with 194 mm outside diameter hollow stem augers. The investigation included the drilling of sixteen (16) test holes (TH13-01 to TH12-09, TH13-10A, TH13-10B, TH13-10C, TH13-11A, TH13-11B, TH13-12 and TH13-13. Four (4) test holes were advanced into the existing landfill (TH 13-01, TH13-04, TH13-11A and TH 13-11B). The approximate locations of the test holes are shown on the test hole location plan in Appendix C.

Ten (10) test holes (TH13-01 to TH13-05, TH13-07 to TH13-09, TH13-11B and TH13-13) were advanced to a depth greater than 10 m. Six (6) test holes (TH13-06, TH13-10A, TH13-10B, TH13-10C, TH13-11A and TH13-12) encountered auger refusal and were terminated at depths between 2.5 to 6.1 m below existing ground surface. Standard Penetration Test (SPT) was completed at regular intervals. Disturbed soil samples were collected for further visual inspection and testing. Four (4) standpipe piezometers were installed at the location of TH13-07, TH13-08, TH13-10C and TH13-11B, to measure groundwater levels (GWL) in the foundation soil and in the municipal solid waste (MSW). Laboratory testing included: moisture content, gradation, and direct shear tests.

Logs have been prepared for each test hole to record the description and the relative position of the soil strata, location of samples obtained, field and laboratory test results, and other pertinent information. Test hole logs and laboratory test results are attached in Appendix D and E, respectively.

3.2 Subsurface Conditions

The existing grade elevations varied across the site from elevation 279.0m for the existing ground to 310.5m at the top of existing landfill. In descending order the soil profile generally consists of:

- Topsoil
- Fill
- Municipal Solid Waste (MSW)
- Upper Sand
- Sand and Gravel / Conglomerate
- Lower Sand
- Bedrock

Each of these units is described further below:

<u>Topsoil</u>

Topsoil was encountered at the ground surface in test holes TH13-06, TH13-08, TH13-09, TH13-10A, TH13-10B, TH13-10C, TH13-12, and TH13-13. The topsoil thickness ranges from 0.10 to 0.30 m. Generally, the topsoil is sandy, brown to dark brown, loose, moist to dry, organic and contains trace amounts of gravel, trace amounts of cobbles and trace amounts of clay.

Fill

Fill was encountered at ground surface in test holes TH13-01 and TH13-04. In test hole TH13-01, the fill is 1 m thick and mainly consists of sand, trace gravel, trace cobble, and trace organic. The fill is brown, loose, dry, and medium to coarse grained. The fill encountered in test hole 13-04 is 0.1 m thick and mainly consists of sand and gravel and trace organic.

Municipal Solid Waste (MSW)

MSW was encountered in test holes TH13-01, TH13-04, TH13-11A and TH13-11B where the drilling was advanced into the existing landfill. The MSW consists of paper, cloth, wood, rubber and other miscellaneous trash. Variable amounts of sand were observed in the MSW as shown in Photos 3 and 4, Appendix A. The MSW is dark brown to black in color and wet. SPT blow counts in the MSW range from 11 to 60.

Upper Sand

Sand 1.4 to 7.5 m thick was encountered below the top soil or at ground surface in TH13-03, TH13-08 to TH13-10C, TH13-12 and TH13-13. Generally, the sand contains trace amounts of gravel and trace amounts cobbles. The sand is brown, compact to dense, moist and medium to coarse grained. The moisture content from laboratory measurements ranges from 5 to 13 percent. SPT blow counts in the sand range from 12 to 49.

Sand and Gravel Deposit

Sand and gravel 1.5 to 10.5 m thick was encountered beneath the upper sand at the location of test holes TH13-03, TH13-08, TH13-09, TH13-10A, TH13-10B TH13-10C, TH13-12 and TH13-13. Sand and gravel was also observed at ground surface in test holes TH13-02, TH13-06 and TH13-07. Generally, the deposit contains some cobbles, and trace amounts of boulders. The deposit is brown, compact to dense, and moist. Generally, the sand is medium to coarse grained. The moisture content from laboratory measurements ranges from 2.5 to 11 percent. SPT blow counts range from 16 to refusal (i.e., three consecutive 50 blows/150 mm or 100 blows/300 mm). Sand and gravel matrix observed from exposed faces on site is dense to very dense. Laboratory measurement for moisture content ranges from 2.5 to 6 percent.

Observation of exposed faces of this unit revealed the strata as a conglomerate, as shown in Photo 05 and 06 in Appendix A. The unit consists of sub-rounded to rounded grains of variable sizes up to boulders size (i.e., > 200 mm). The observed matrix is poorly sorted and cemented.

Lower Sand

Sand 6.7 to 23.7 m thick was encountered below the conglomerate at the location of test holes TH13-03, TH13-07 to TH13-09, and TH13-13 and directly underneath the MSW in test holes TH13-01 and TH13-11B. Generally, the sand contains some fines and trace gravel. The sand is brown becoming pinkish brown with increasing depth, compact to dense, moist to wet, and medium to fine grained. The moisture content from laboratory measurements ranges from 5 to 13 percent. SPT blow counts in the sand range from 14 to refusal. Blow-up was observed in the sand below the groundwater table.

Bedrock

Auger refusal on suspected bedrock was encountered in test holes TH13-02, TH13-09, TH13-10B and TH13-10C at elevation 300, 265, 297 and 297 m, respectively.

Rock outcrops were observed at the northern boundary of the landfill extending towards the northwest. The observed outcrops were knobby with an irregular topography.

3.3 Groundwater Condition

Groundwater elevations from the four (4) standpipe piezometers installed at the Site are presented in Table 01. The piezometers were installed to monitor groundwater condition and assist in interpretation of groundwater flow direction and gradients within the overburden. The locations of the standpipe piezometers are shown on Figure 01 in Appendix C.

Monitoring results from TH/MW13-10C suggest a suspected perched groundwater at elevation 299.3 m in the sand and gravel conglomerate. Monitoring results from TH/MW13-11B indicate perched leachate level in MSW at elevation 285.4 m or 8.2 below the existing landfill grade. Groundwater levels may vary seasonally, annually or due to construction or landfilling activities and waste composition.

In normal conditions, leachate level in the MSW is maintained at low elevation within the landfill due to the (relatively) high permeability of the waste material and the performance of the leachate collection system; however, due to the natural non consistency of the material forming the MSW, local water entrapment can occur and cause perched water level in the landfill.

For the purpose of stability analysis, the groundwater elevation in the sand and in the MSW is generally assumed at elevation 280 and 290 m, respectively.

Standpipe ID	Installed in Elevation (m) MW13-01 TH13-07 Lower Sand 281.4 Ju MW13-02 TH13-08 Lower Sand 291.7 Ju MW13-03 TH13-10C Sand & Gravel Conglomerate 302 Ju MW13-04 TH13-11B MSW 293.6 Ju	Date	Measured Groundwater Elevation (m)		
Standpipe ID Location Installed in Elevation (m) Date Elevation (m) MW13-01 TH13-07 Lower Sand Elevation (m) June 21, 2013 Installed MW13-01 TH13-07 Lower Sand 281.4 June 22, 2013 263.7 MW13-02 TH13-07 Lower Sand 291.7 June 22, 2013 264.5 MW13-02 TH13-08 Lower Sand 291.7 June 22, 2013 261.3 MW13-03 TH13-08 Sand & Gravel Conglomerate 302 June 23, 2013 Installed MW13-04 TH13-11B MSW 293.6 June 24, 2013 Installed	Installed				
M\\/12_01	TH12 07	Lower Sand	291 /	June 22, 2013	263.7
1414413-01	Standpipe IDLocationInstalled inElevation (m)Image: Constant (m)MW13-01TH13-07Lower Sand281.4June (m)MW13-02TH13-08Lower Sand291.7June (m)MW13-03TH13-10CSand & Gravel Conglomerate302June (m)MW13-04TH13-11BMSW293.6June (m)	June 23, 2013	263.7		
			June 25, 2013	264.5	
				June 22, 2013	Installed
MW13-02	TH13-08	Lower Sand	291.7	June 22, 2013	261.3
				June 25, 2013	262.9
		Const & Crowel		June 23, 2013	Installed
MW13-03	13-01 TH13-07 13-02 TH13-08 13-03 TH13-10C		302	June 23, 2013	299
		Congiomerate		June 25, 2013	Elevation (m) 3 Installed 3 263.7 3 263.7 3 264.5 3 261.3 3 262.9 3 1nstalled 3 262.9 3 299 3 298.4 3 Installed
NN/42 04		MOW	202.0	June 24, 2013	Installed
111113-04	IH13-11B	IVISVV	293.6	June 25, 2013	285.4*

Table 01: Summary of GWL Monitoring

*leachate level in the MSW

4 Geotechnical Assessment

4.1 Settlement

The rate and magnitude of landfill settlement is an important performance consideration. Generally, case histories suggest that waste has consolidation characteristics similar to peat, namely rapid initial consolidation followed by secondary consolidation. The rate and magnitude of waste settlement have been found to vary primarily with the unit weight and overburden pressure. Therefore settlement observed in deep landfills is larger than shallow landfills.

Over the long term, a typical waste fill might settle between 10 to 25 percent of its total thickness. Settlement in landfills is a result of different mechanisms: (a) distortion, bending, crushing and reorientation, (b) plastic creep, (c) raveling, (d) corrosion, oxidation and combustion, and (e) biochemical decay. The density achieved from compaction is the key factor influencing the magnitude of landfill settlement. Due to long term settlement, the initial side slopes should be expected to change; therefore, post closure maintenance may need to consider re-grading of slopes.

Settlement magnitude for landfills is difficult to estimate due to material variability within the waste fill; therefore, a typical settlement range of 10 to 25% of the landfill thickness, as mentioned above, should be expected within the lifetime of the landfill.

Differential settlement will occur between the perimeter road/berm fill and the waste within the disposal footprint and at the interface between the recently placed and existing MSW (as shown in section alignment 2A-2013 and section A-A in Appendix A). With the implementation of proper compaction technique, such settlements can be mitigated. Relative differential settlement between new and existing waste may adversely impact and cause internal tensile stresses in the liner systems. In this regard, it is recommended to install two (2) additional reinforcement layers of high strength geogrid such as Tensar UX1800HS or equivalent. The proposed geogrid layers will contribute to the required resistance to the tensile stress induced in the liner and protect the linear.

The final cover of the landfill should be monitored. A settlement monitoring program is proposed for the initial cells so that settlements are recorded. The monitoring results will be used to assess and verify the anticipated settlement and modify the design of the uncompleted cells, as required.

4.2 Bearing Capacity

An analysis was carried out to assess the bearing capacity of the foundation soil below the proposed waste fill embankment. The analysis was undertaken to assess the height to which the waste embankment can be constructed. Based on the provided geometry for the proposed landfill expansion, bearing capacity is not anticipated to be a concern for the design thickness of 33 m (i.e. Elevation 311 m).

4.3 Stability Assessment

Stability assessment was carried out to investigate the stability of the proposed landfill configurations, in terms of height and overall side slope that could be developed to maintain acceptable factors of safety against slope instability. An adequate Factor of Safety (FS) against slope instabilities must be achieved for the proposed waste embankment side slopes. In this regard, a design objective FS of 1.5 has been selected for the long term condition consistent with acceptable design practice. The granular nature of the foundation soils is favourable for stability as excess pore water pressure is not anticipated to develop in response to loading. Therefore, the short term, end of construction, condition was not considered in the stability assessment.

Stability assessment consisted of a limit equilibrium slope stability analysis using software developed by GeoStudio International. Both circular and non-circular failure surfaces were analyzed. Groundwater levels modelled in the analysis were based on a groundwater monitoring program installed during 2013 field work and based on a data collected from the existing monitoring wells around the landfill area.

4.3.1 Analysis Parameters

The soil strength parameters adopted in the analysis are summarized in **Table 02**. These parameters are derived based on correlation with index soil properties from laboratory test results and back analysis stability results. Since layers of daily cover soil are likely to be thin and irregular in comparison to the layers of refuse, no distinction was made between the two.

Back analysis was performed to establish and assign strength parameters to the waste material. The analysis was completed for the existing landfill geometry assuming a FS close to unity. Different scenarios were considered in the back analysis using different sections and piezometric levels.

Material	$1 + \frac{1}{2} + $	Effective Str	ess Analysis	One was deve to a Flow (m)	
Material	Unit Weight, γ (kN/m ³)	Cohesion, C' (kPa)	Friction Angle, φ' (°)	Groundwater Elev. (m)	
Sand (upper)	16.5	0	30		
Sand and Gravel	17.0	0	33	265 - 280	
Sand (lower)	16.7	0	30		
MSW	12.0	1	18		
Bedrock		Impen	etrable		

4.3.2 Analysis Results

The proposed excavation configuration and construction staging plan were made available by Dillon Consulting and used to complete the stability assessment. Stability analyses were completed for two construction stages for each cell:

- Stage 1: side slope stability for excavations below existing ground and adjacent to the existing landfill,
- Stage 2: side slope stability for embankment at design height

The results of the analysis are presented graphically in Appendix F and are summarized in **Table 03**. The following recommendations are provided based on the findings of the stability analysis:

- Excavation side slope shall not be steeper than 3H:1V.
- Landfill slopes less than 10 m high can be constructed at side slopes of 4H:1V. Flatter slopes 5H:1V shall be used for fill height between 10 and 15m. For fill heights greater than 15 m side slope at 6H:1V or flatter is recommended.
- The piezometric condition associated with groundwater within the existing waste fill has a significant impact on the stability. The analyses were completed to investigate the maximum groundwater level at which the design objective FS=1.5 would be maintained. In this regard, the groundwater level should be controlled at or below elevation 290 m in the cells located at the west side (i.e., Cell 1A, 3, 4 and 6). Leachate level ranged from 290 m (at Cell 2 and Cell 5) to 294 m (at Cell 1 and Cell 7) can be tolerated.. Groundwater level variation in the order of 1 m could impact the calculated FS. Monitoring is recommended during and post cell development to observe and protect against development of higher groundwater levels.

Generally, groundwater elevation in the lower sand has a limited impact on the stability analysis as the modelled groundwater level is relatively deep and below theoretical slip surfaces.

• Perimeter berms up to 3 m high and 6 m crest wide can be constructed at 3H:1V side slopes.

				of Slope Stabi			
Cell #	Cross Section	Construction Stage	Critical Side Slope	Groundwater Elev. (m)	Leachate Level Elev. (m)	Critical FS	Figure #
		1	3H:1V	280	-	1.72	01
	1+400 - 2014	2	4H:1V	280	298	1.59	02
Cell 1A Cell 1A Cell 2 Cell 3 Cell 4 Cell 5	Alignment 3 -	1	4H:1V	280	-	2.3	03
Cell 1 1 A Cell 1A Cell 1A Cell 2 A	2013	2	4H:1V	280	292	1.64	04
		1	3H:1V	274	-	1.72	05
	A - A - 2011	2	4H:1V	274	290	1.53	06
Cell IA		1	3H:1V	280	-	1.73	07
	C – C - 2011	2	4H <i>:</i> 1V	280	290	1.65	08
	Alignment 2A	1	5H:1V	280	290	1.7	09
0	- 2013	2	4H:1V	280	290	1.74	10
Cell 2	Alignment 3 –	1	5H:1V	280	292	1.76	11
	2013	2	5H:1V	280	294	1.84	12
	0+100 - 2014	1	3H:1V	270	-	1.73	13
0.00		2	5H:1V	268	290	1.52	14
Cell 3 Cell 4	B - B - 2011	1	3H:1V	280	-	1.65	15
		2	6H:1V	280	290	1.59	16
	A - A - 2011	1	5H:1V	280	290	1.67	17
0.11.4		2	6H:1V	280	290	1.67	18
Cell 2 Cell 3 Cell 4 Cell 5	C - C - 2011	1	3H:1V	280	290	2.0	19
		2	4H:1V	280	290	1.56	20
Cell # Sea Sea 2 - 2 + 3 + 400 2 - 2 + 30 + 300 2 - 2 + 300 2 - 300	Alignment 3 - 2013	1	5H:1V	280	294	1.85	21
		2	6H:1V	280	294	1.83	22
	B - B - 2011	1	4H:1V	265	290	1.52	23
	0+400 - 2014	1	3H:1V	280	-	1.72	24
		2	6.2H:1V	280	290	1.74	25
	0+200 - 2014	1	3H:1V	280	-	1.73	26
		2	6.6H:1V	280	290	1.51	27
	Alignment 3 - 2013	1	5H:1V	280	294	1.87	28
Cell 7	0+700 – 2014	2	3H:1V	280	-	1.73	29
Cell 1 Cell 1A Cell 2 Cell 3 Cell 4 Cell 5 Cell 5		1	4H:1V	280	294	1.67	30

Table 02.	Summary	~	Clana	Ctobility	Analysia	
able us.	Summary	UI.	Siohe	Stability	y Analysis	

4.4 Excavation

The means and methods of the excavation is the responsibility of the Contractor. All excavations shall be in accordance with applicable regulations of Ontario's Workplace Health and Safety. As per Ontario's Occupational Health and Safety Act, the excavated soil is generally classified as Type 2 soil. The Contractor shall prepare an excavation plan observing the recommendations provided in this report. Conventional mechanical/hydraulic excavation and earth moving equipment are expected to perform satisfactorily. Based on short term groundwater monitoring readings presented in Table 01 and the historical groundwater monitoring data around the landfill area, the GWL is anticipated below the planned excavation level between elevation 263 and 264 m. A perched GWL is suspected in a zone of moderate permeability cemented conglomerate. Provisions for construction dewatering and groundwater control should be allowed for in project schedule and cost where this unit is encountered in the excavation. Groundwater seepage could result in undermining and loss of toe support which could eventually adversely impact the stability of cut slopes. In these events, AECOM should be contacted to assess site conditions and review design recommendations, as required.

The engineering design recommendations presented within this report are based on the assumption that an adequate level of monitoring will be provided during construction. An adequate level of monitoring is considered to be full-time onsite supervision during the cell excavation.

4.5 Drainage

The importance of internal drainage within the landfill cannot be overstated. The potential for low permeability barriers within the waste may impede drainage and raise the piezometric level and adversely impact the stability of the fill. It is essential to incorporate an efficient leachate collection system in the design to promote downward migration and protect against mounding of liquid within the waste. Regular monitoring of the performance of the leachate collection system should be an integral part of the operating procedures.

The components of the drainage system buried within the landfill will be subjected to significant vertical and lateral strain. The leachate collection system design shall account for these conditions.

4.6 Excavated Material

Excavated material can be used to construct perimeter berms and roadway embankments (side slopes should not be steeper than 3H:1V). The excavated materials may also be used for soil cover. Soils for roadway embankment construction should exclude any organic or deleterious objects or materials. When an area is scheduled for excavation, the topsoil should first be removed and stockpiled for reuse and the excavated soil incorporated into roadway embankments or stockpiled in temporary berms for future use. Areas to be used for stockpiles should also be stripped of the topsoil prior to placing material in these areas. Stockpiles should be setback at safe distance not less than 5 m from open excavations.

As the site develops, space will be restricted and it may become more difficult to find suitable stockpile locations. In later years, material can be placed around the perimeter of the site. If material is placed in an area proposed for future landfill development, it is important that the stockpile is depleted prior to scheduling excavations in these areas.

4.7 Berms and Roadway Embankment

The construction of berms may be required to shield the landfill operations, to reduce noise and litter problems, and to provide an initial slope against which to place and compact refuse and facilitate the overall stability.

The above grade berms will be constructed as per final grading. The construction of perimeter berms is required to provide an initial slope against which to place and compact refuse and to direct surface water away from the active operations.

Sand berms can be constructed and lined with an appropriate geosynthetic liner to control seepage. Side slopes with a maximum height of 5m should not be steeper than 3H:1V, higher berms can be constructed with a side slope not steeper than 4H:1V. All construction activities should be subject to quality control testing.

The following recommendations are provided with respect to roadway construction on berms:

- All topsoil and deleterious material should be removed before placement of fill.
- Fill shall be placed in 300 mm lifts and compacted to 95% of Standard Proctor maximum dry density.
- Wet or soft subgrade areas should be excavated and replaced with suitable fill.
- Prior to placement of fill, the subgrade should be scarified to a depth of 200 mm and compacted to 95% of Standard Proctor maximum dry density.
- During construction all surfaces and construction areas should be adequately graded to facilitate drainage.

Based on a preliminary assessment of the anticipated use, the following preliminary pavement alternatives are provided. Further engineering input will be required to develop the final design pavement section:

Concrete surface:	150 mm concrete 150 mm base crushed granular 750 mm compacted fill
Asphalt surface:	130 mm asphalt 150 mm base crushed granular 150 mm subbase crushed granular 750 mm compacted fill

5 Closure

The findings and recommendations of this report were based on the results of field and laboratory investigations, combined with an interpolation of soil and ground water conditions between the test hole locations. If conditions are encountered that appear to be different from those shown by the test holes drilled at this site and described in this report, or if assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendation can be reviewed and justified, if necessary.

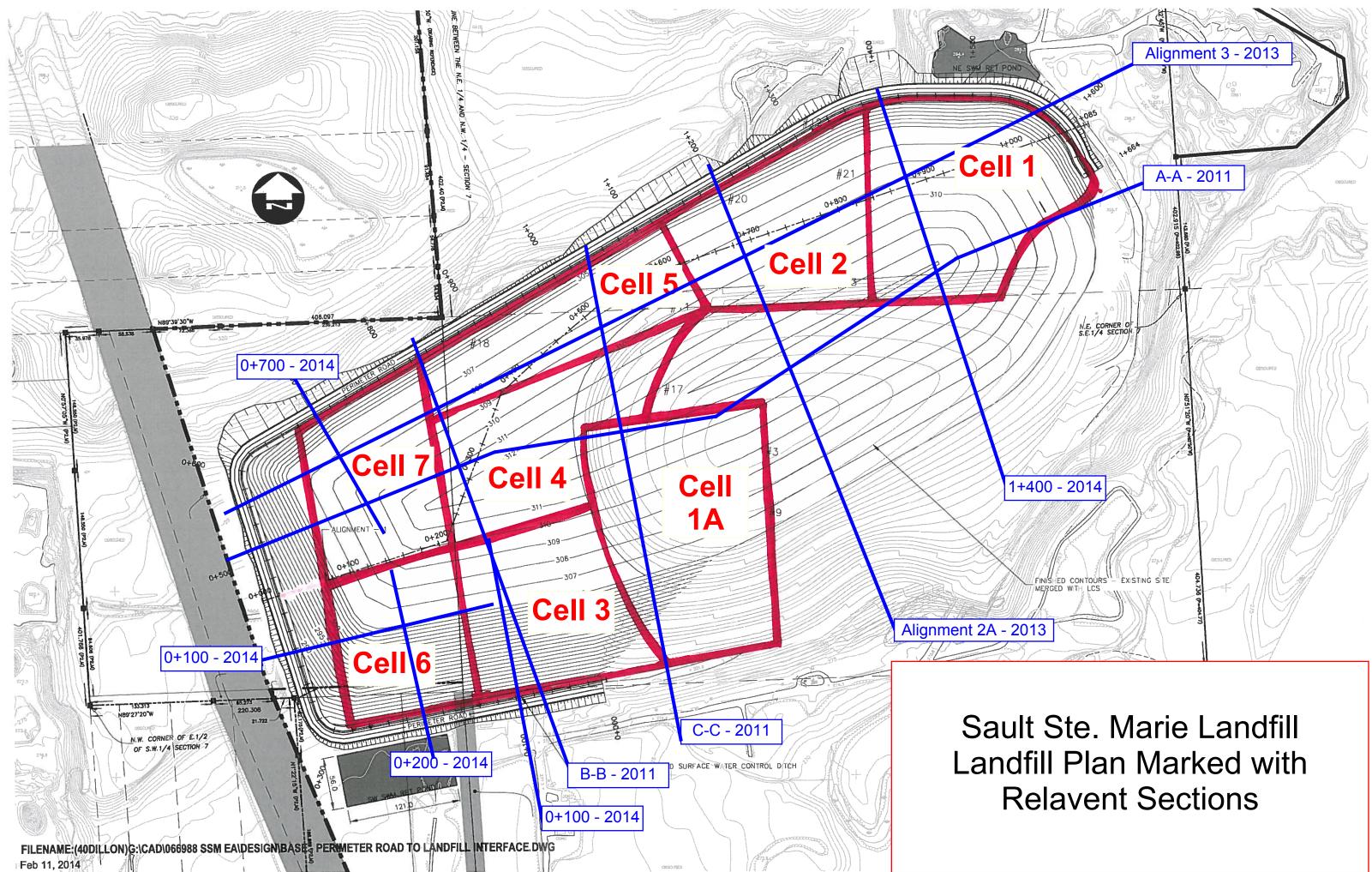
Soil conditions, by their nature, can be highly variable across a site. The placement of waste fill and prior construction activities on a site can contribute to the variability especially near surface soil conditions. A contingency should be included in the construction budget to allow for possibility of variation in soil conditions, which may result in modifications of the design and construction procedures.

Photo 01: General site view, looking northeast

Photo 02: General site view, TH13-01, looking northeast

Photo 03: Waste material collected during drilling, TH13-01

Photo 04: Waste material collected during drilling, TH13-01


Photo 05: Exposed Conglomerate unit, looking northwest from TH13-01.

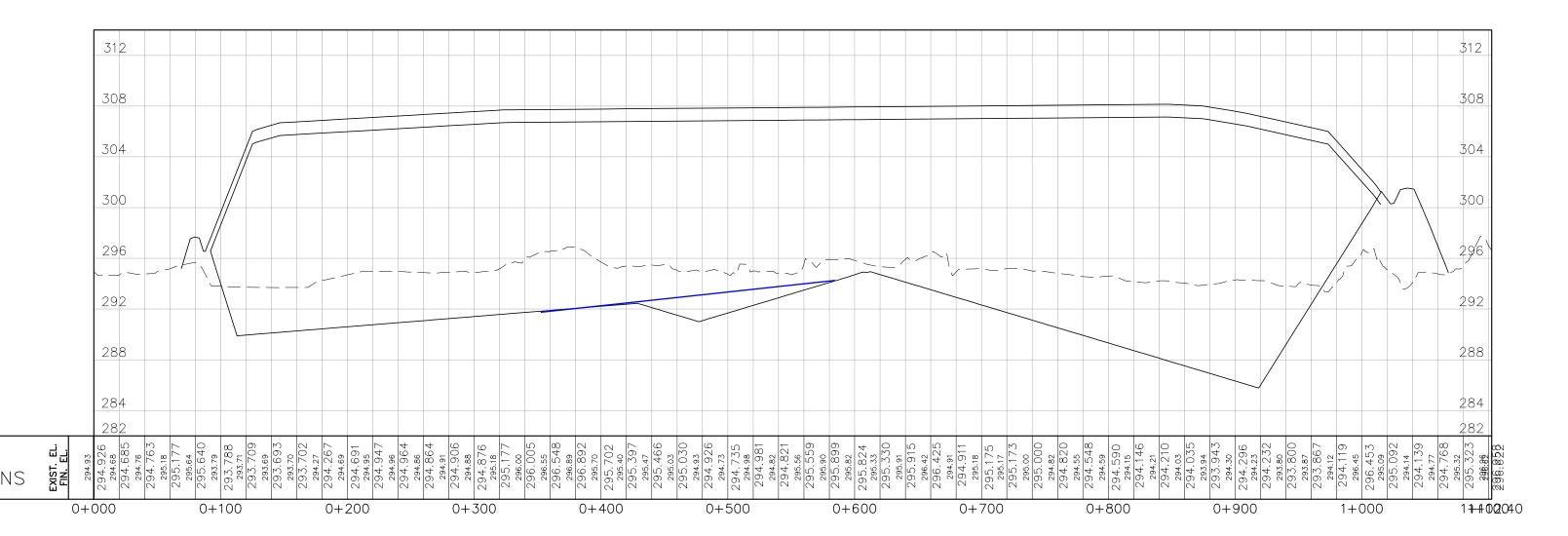
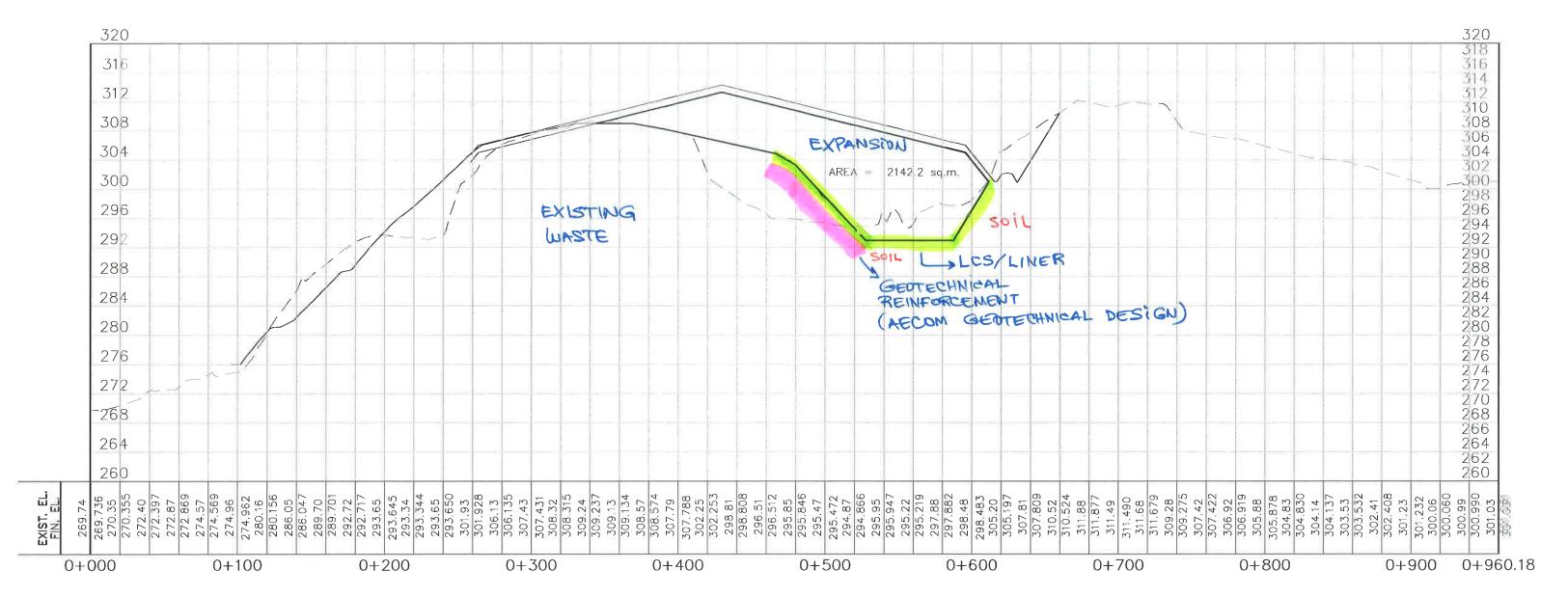


Photo 06: Exposed Conglomerate unit, looking northwest from TH13-01.

Appendix B Landfill Plan and Sections

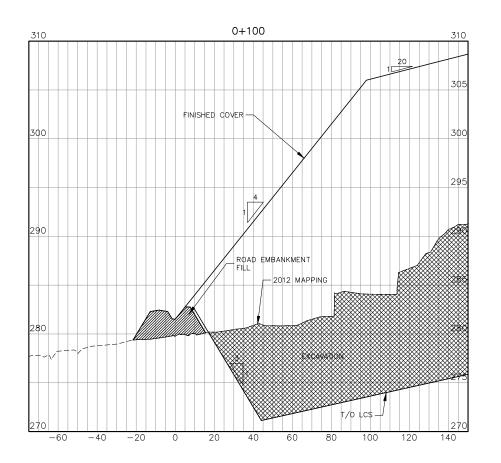


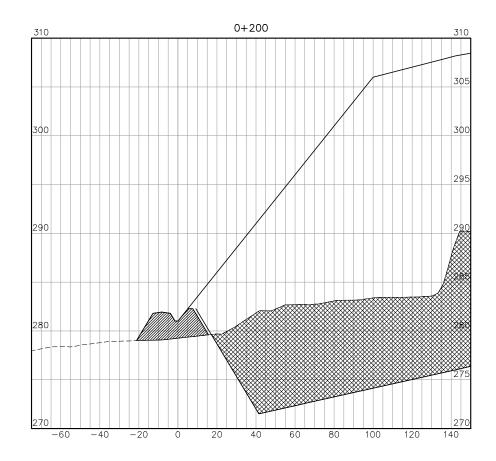
Alignment – 3

Alignment 3 - 2013

Alignment – 2 a

Alignment 2A - 2013


FILENAME:(40DILLON)G:\CAD\066988 SSM EA\DESIGN\BASE - NORTH AND WEST EXPANSION - NEW.DWG Dec 23, 2013


22

20⁸

2 OF 4

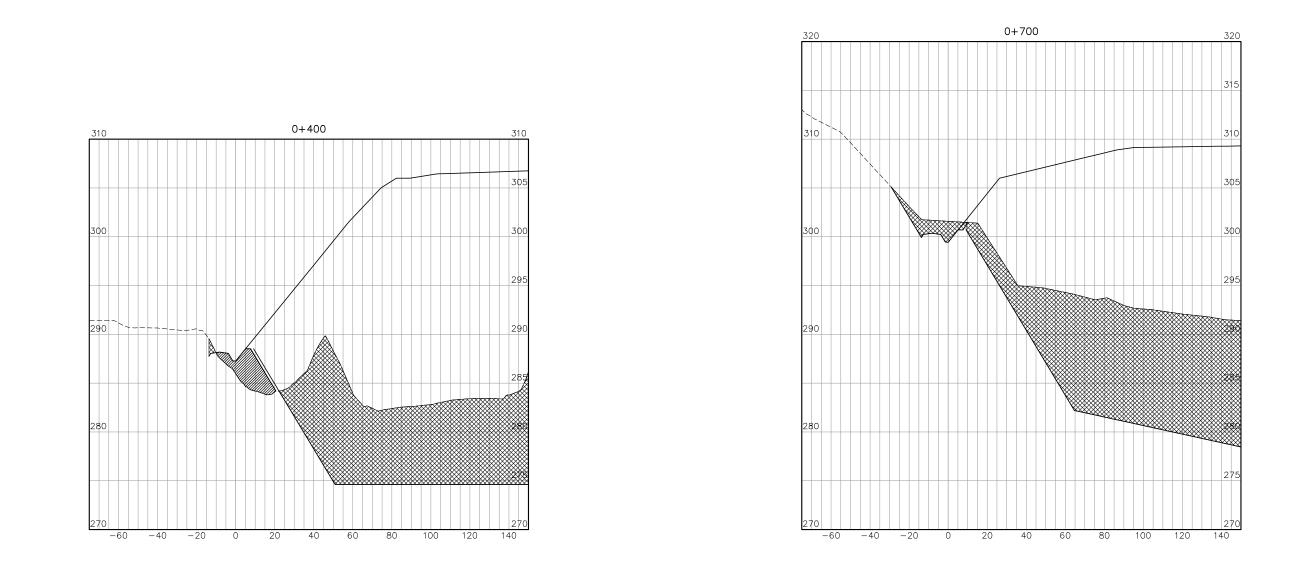
-

Cover area: 327,000 sq.m. (1 m thick)

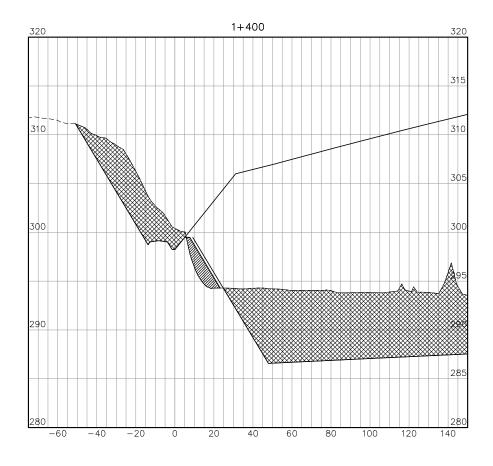
LCS Area below 2012 Mapping: FLOOR 97,200 sq.m., 0.75 m THICK SIDE SLOPES 42,200 sq.m., 0.50 m THICK

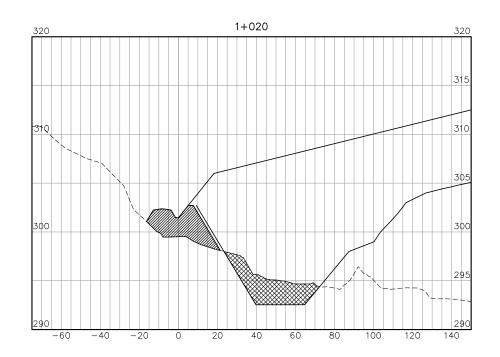
LCS VOLUME: $(97,200 \times 0.75) + (42,200 \times 0.5) = 94,000 \text{ cu. m.}$

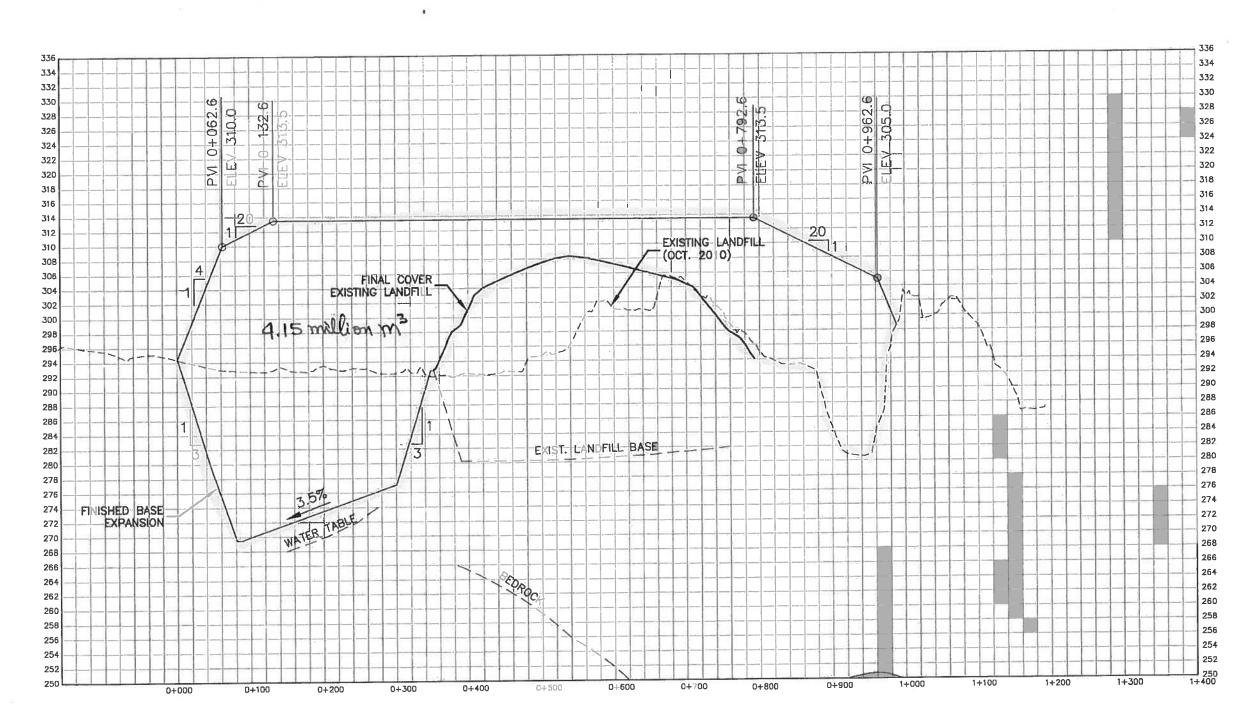
Excavation: 1,151,000 cu.m.


Daily and Int. Cover: (-<u>800,0000 cu.m.)</u>

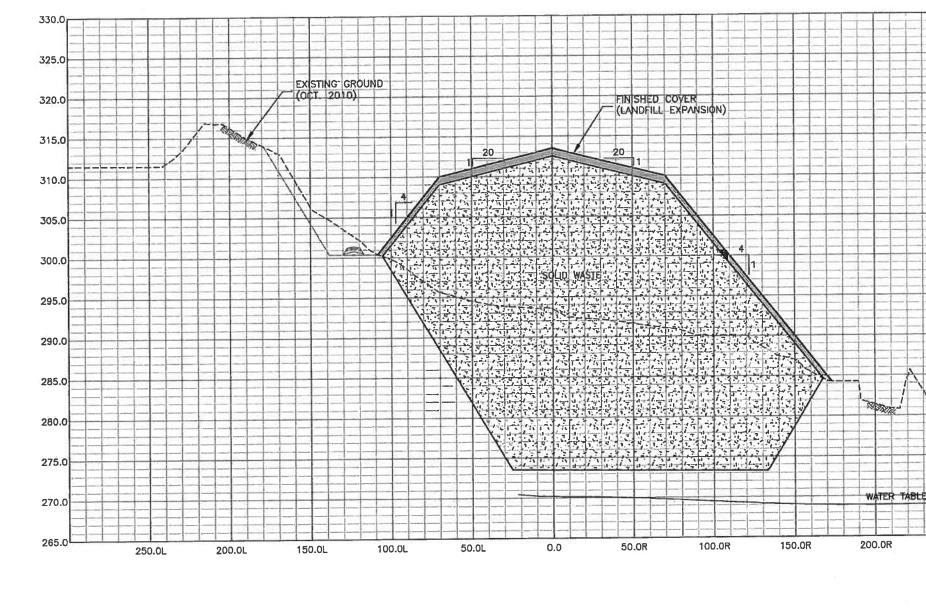
Road Embankment: <u>(-54,000 cu.m.)</u>


Soils: 1,151,000 + 94,000 - 800,000 - 327,000 - 54,000 = <u>64,700u.m.</u>


0+100 and 0+200 - 2014


FILENAME:(40DILLON)G:\CAD\066988 SSM EA\DESIGN\BASE - PERIMETER ROAD TO LANDFILL INTERFACE.DWG Feb 11, 2014

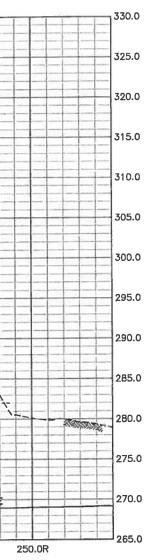
0+400 and 0+700 - 2014

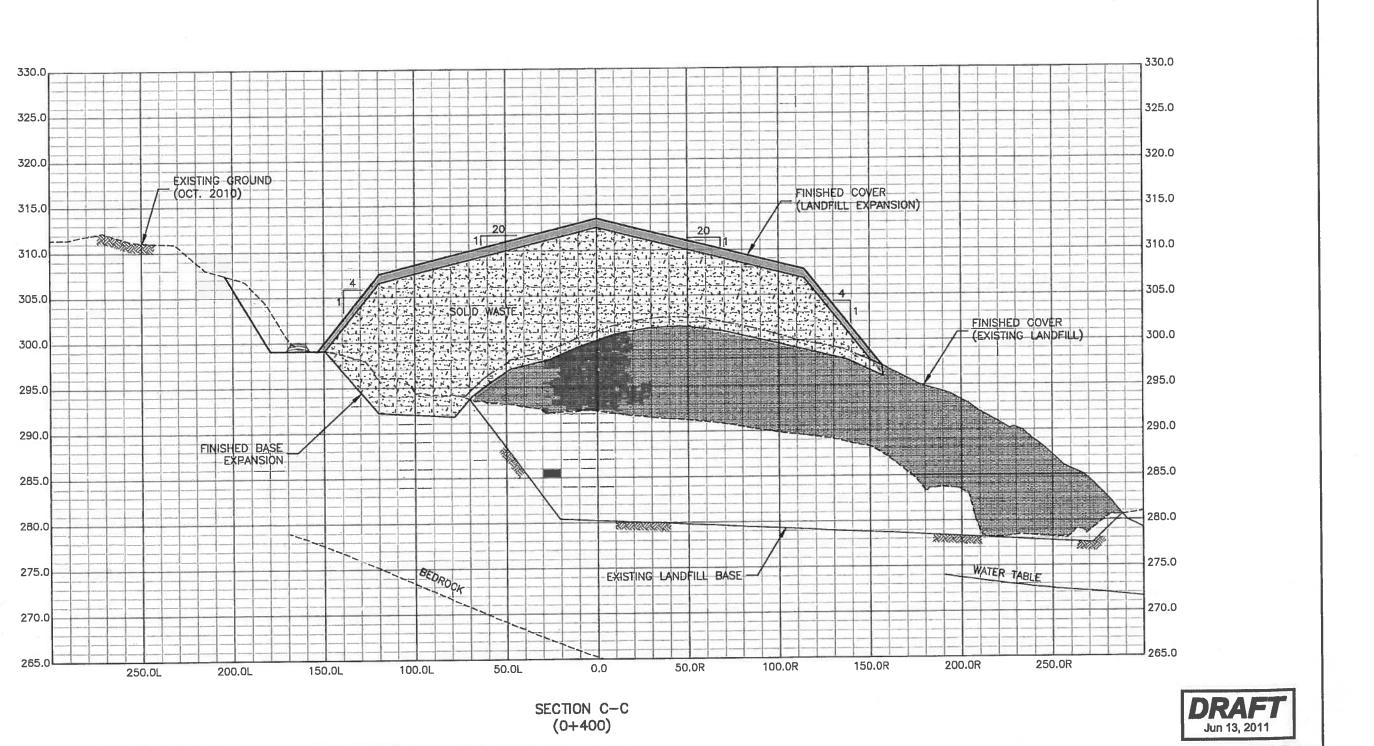


SECTION A-A (0+200)

A - A - 2011

WISON OFTIONS MAY ZDIILYTCURES/CURRENT/OFTION-JDWC 08/13/1




SECTION B-B (0+200)

B - B - 2011

CIN OPTIONS MAY 2011/FIGURES/CURRENT/OPTION-IDWC 08/13

C - C - 2011

Appendix C Test Hole Location Plan

Figure: 01 AECOM

City of Sault Ste. Marie

		Sault St. Marie - Landfill Expa				IT: Ci	ty Of Sault Ste. Marie		TESTHOLE NO: TH13-0	
		16 T Easting: 705070 Northin FOR: TBT Engineering Consul							PROJECT NO.: 6011762	
	PLE T					IOD: IT SPO	Tire Mounted CME 750), HSA 194 mm	ELEVATION (m): 296.70 COVERY	
DEPTH (m)	SOIL SYMBOL	SOIL DESC		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR STR + Torvane + × QU × □ Lab Vane □ △ Pocket Pen. △ ♥ Field Vane ♥		
0		SAND (FILL) - organic, trace gravel - brown, loose, dry - medium to coarse grained	trace cobble					0 50 100 15	0 200	
1 2		MUNICIPAL SOLID WASTE (MSW)		S01	43			SPT 5, 5, 38 blows/150 mm SPT Recovery 6%	
3		- moist below 3.1 m		\times	S02 G03	8	•		SPT 7, 5, 3 blows/150 mm SPT Recovery 11%	
5		- dark brown to black, wet, some co	bbles below 4.6 m	\times	S04	10	•		SPT 12, 8, 2 blows/150 mm SPT Recovery 8%	
6 7				X	S05 G06	16	•		SPT 8, 10, 6 blows/150 mm SPT Recovery 11%	
3					= S07	51/ 51mm	*	•	SPT 51 blows/51 mm SPT Recovery 0%	
9		- moist to dry below 9.1 m		\times	S08 G09	59/ 152mm		•	SPT 59 blows/152 mm SPT Recovery 0%	
10		SAND (Lower) - trace gravel - brown, compact, moist - medium to coarse grained		X	S10	21	~		SPT 12, 11, 10 blows/150 mm SPT Recovery 71%	
11										
12				X	S11	26	0		SPT 8, 11, 15 blows/150 mm SPT Recovery 67%	
14		- dense below 13.7 m		X	S12	38			SPT 18, 19, 19 blows/150 mm SPT Recovery 83%	
15								· · · · · · · · · · · · · · · · · · ·		
			A				LOGGED BY: Sam Osl		OMPLETION DEPTH: 20.42 m OMPLETION DATE: 6/18/13	
		ΑΞϹΟΛ	/1				REVIEWED BY: Zeyad PROJECT ENGINEER:		DIVIPLETION DATE: 0/18/13 Page	1

PROJECT: Sault St. Marie - Landfill Expansion LOCATION: 16 T Easting: 705070 Northing: 5163139 UTM N 0.0 I CONTRACTOR: TBT Engineering Consulting Group					CLIENT: City Of Sault Ste. Marie TESTHOLE NO: TH1				
						PROJECT NO.: 601170			
					OD:	Tire Mounted CME 750, HSA 194 mm │ELEVATION (m): 296.7 ON ⊟BULK │NO RECOVERY ∏CORE	/0		
DEPTH (m)			SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◇ Dynamic Cone ◇ × Qu × ● SPT (Standard Pen Test) □ Lab Vane □ 0 20 40 60 80 100 △ Pocket Pen. △ ■ Total Unit Wt ■ △ Field Vane ◆ (k1/m*) ④ Field Vane ◆ 16 17 18 19 20 21 (kPa)			
-16		- trace silt, pinkish brown, fine to medium grained below 15.2 m - Gravel: 0%, Sand: 91.0%, Fines: 9.0%	X	S13	30	20 40 60 80 100 50 100 150 200 SPT 8, 14, 16 blows/150 mm SPT Recovery 96%) 28		
-17		- wet below 16.8 m	X	S14	31	● ◆ SPT 4, 13, 18 blows/150 mm SPT Recovery 46%			
-18 -19		- trace cobbles, trace oxidation below 18.3 m	X	S15	72	SPT 8, 34, 38 blows/150 mm SPT Recovery 58%	2) 2		
-20				S16	30	● ◆ SPT 10, 14, 16 blows/150 mm	2		
-21		 END OF TEST HOLE AT 20.4 m IN SAND. NOTES: 1. Seepage was observed at 16.8 m below ground surface. 2. Sand blowup observed at 16.8 m below ground surface. 3. Test hole open to 19.4 m below ground surface upon completion. 4. Test hole backfilled with with auger cuttings after drilling. 				SPT Recovery 63%	2		
23						2			
-24									
25							2		
26							2		
28							2		
29							2		
30							2		
JU	I I			1	1	LOGGED BY: Sam Oshati COMPLETION DEPTH: 20.42	m		
		AECOM		REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/18/13					

		Sault St. Marie - Landfill Expansion			IT: C	ty Of Sault Ste. Marie	TESTHOLE NO: TH13-02	
		16 T Easting: 704829 Northing: 5163258 UTM N 1.5 E					PROJECT NO.: 60117627	
		TOR: TBT Engineering Consulting Group				Tire Mounted CME 750, HSA 194 mm	ELEVATION (m): 310.50	
SAMP	PLE T	(PE GRAB SHELBY TUBE		SPL	T SPO		RECOVERY	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR \$ ♦ Dynamic Cone ◊ + Torvane ♦ SPT (Standard Pen Test) ♦ (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wt ■ (KV/m ³) 20 21 Picklic MC Liquid 16 17 18 19 20 21 (KPa) Plastic MC Liquid 20 40 60 80 100	+ COMMENTS	
0		SAND and GRAVEL - trace organics, trace to some cobbles, trace boulders						
	4. 4.	- brown, compact, moist						3
-1		- medium to coarse grained						
								3
-2	•			S17	27		SPT 14, 13, 14 blows/150 mm	
2							SPT Recovery 33%	
								3
2								
-3		- trace clay to 3.7 m below ground surface	\bigtriangledown	S18	19		SPT 7, 9, 10 blows/150	
			\square	510		▼ · · · · · · · · · · · · · · · · · · ·	mm	3
							SPT Recovery 17%	
-4								
								3
		van dance at 1.9 m below ground surface	\mathbf{X}	S19	56	↓	SPT 18, 24, 32	
-5		- very dense at 4.8 m below ground surface	\vdash	× ·			blows/150 mm	
							SPT Recovery 4%	3
								3
-6							· · · · · · · · · · · · · · · · · · ·	
			X	S20	27		SPT 9, 12, 15 blows/150	~
			\square	ľ			SPT Recovery 67%	3
7	•							
								3
-8			X	S21	16		SPT 6, 7, 9 blows/150	
		- silt lens (76 mm thick), wet, low plasticity					mm SPT Recovery 83%	
	•	· · · · · · · · · · · · · · · · · · ·						3
-9								
-	•		\bigtriangledown	S22	30		SPT 3, 12, 18 blows/150	
		- moist, fine grained below 9.4 m	\square	522			mm	3
10							SPT Recovery 83%	
		END OF TEST HOLE AT 10.5 m ON SUSPECTED BEDROCK.	-				· · · · · · · · · · · · · · · · · · ·	3
-11		NOTES:						
• •		1. Power auger refusal at 10.5 m below ground surface in SAND and GRAVEL.				······································		
		No seepage observed upon completion of drilling.						2
12		3. Test hole open to 10.5 m below ground surface upon						
14		completion. 4. Test hole backfilled with auger cuttings after drilling.						
								2
12								
13								
								2
14								
15								
IJ	1			1	1	LOGGED BY: Sam Oshati	COMPLETION DEPTH: 10.52 m	
		AECOM				REVIEWED BY: Zeyad Shukri	COMPLETION DATE: 6/18/13	
						PROJECT ENGINEER: Rick Talvitie	Page 2	4

	Sault St. Marie - Landfill Expansion			IT: Ci	ty Of Sault Ste. Marie TESTHOLE NO: TH13-0	
	16 T Easting: 704869 Northing: 5163123 UTM N 3.0 E				PROJECT NO.: 601176	
	IOR: TBT Engineering Consulting Group (PE GRAB SHELBY TUBE			<u>OD:</u> T SPO	Tire Mounted CME 750, HSA 194 mm ELEVATION (m): 294.50 ONBULKNO RECOVERYCORE)
DEPTH (m)	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	ON BULK NO RECOVERY CORE PENETRATION TESTS UNDRAINED SHEAR STRENGTH + Torvane +	
0	SAND (Upper) - trace gravel, trace silt, trace cobble - brown, compact to dense, dry to moist - medium to coarse grained					2
-2		X	S24	49	●	2
-3	- moist, cobbly below 3 m	\times	S25	31	 SPT 9, 15, 16 blows/150 mm SPT Recovery 25% 	
-5	- fine grained below 4.6 m - Gravel: 6.3%, Sand: 90.4%, Fines: 3.3%	X	S26	12	●● SPT 3, 5, 7 blows/150 mm SPT Recovery 75%	
-6 -7	- dense below 6 m	X	S27	44	SPT 6, 15, 29 blows/150 mm SPT Recovery 54%	:
-8	SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, dense, moist - medium to coarse grained	X	S28	37	SPT 11, 17, 20 blows/150 mm SPT Recovery 92%	
-9 -10	- trace oxidation - Gravel: 44.7%, Sand: 46.9%, Fines: 8.4%	\times	S29	48	• SPT 12, 25, 23 blows/150 mm SPT Recovery 71%	:
-11		\times	S30	37	SPT 11, 16, 21 blows/150 mm SPT Recovery 46%	
12	- very dense below 12 m	\times	S31	92	● SPT 23, 47, 45 blows/150 mm SPT Recovery 75%	
-14	SAND (Lower) - trace cobble, trace silt - brown, very dense, moist - fine to medium grained	X	S32	85	● SPT 10, 25, 60 blows/150 mm SPT Recovery 100%	
15					LOGGED BY: Sam Oshati COMPLETION DEPTH: 20.42 m	⊥
	AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DEPTH. 20.42 II REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/18/13	1
					PROJECT ENGINEER: Rick Talvitie Page	1 /

		Sault St. Marie - Landfill Expansion			IT: C	ty Of Sault Ste. Marie TESTHOLE NO: TH13	
		: 16 T Easting: 704869 Northing: 5163123 UTM N 3.0				PROJECT NO.: 60117	
						Tire Mounted CME 750, HSA 194 mm ELEVATION (m): 294.	50
SAMP	LE T	YPE GRAB SHELBY TUBE		SPL	IT SPC		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	
15 -16		- wet, below 15.6 m	X	S33	76	• SPT 11, 25, 51 blows/150 mm SPT Recovery 63%	2
							2
-17		 trace oxidation, some gravel, some silt below 16.8 m Gravel: 19.0%, Sand: 69.1%, Fines: 11.9% 		S34	31	• • SPT 9, 12, 19 blows/15	50
-18			ľ			SPT Recovery 50%	2
		- pinkish brown, very dense, medium grained below 18.3 m	\bigtriangledown	S35	76	• SPT 10, 34, 42	2
-19		- fine grained sand, trace cobble, trace clay below 18.9 m				blows/150 mm SPT Recovery 92%	
				,			2
-20			X	S36	65	SPT 6, 22, 43 blows/15 mm	50
		END OF TEST HOLE AT 20.4 m IN SAND.				SPT Recovery 79%	2
-21		NOTES: 1. Seepage observed at 15.6m below ground surface. 2. Sand blowup observed at 16.8 m below ground surface. 3. Test hole open to 19.7 m below ground surface upon completion.					2
-22		4. Test hole backfilled with auger cuttings after drilling.					
							2
-23							
20							
							2
-24							
							2
-25							
							2
-26							
20							
							2
27							
							2
28							
00							1
-29							
							:
30						LOGGED BY: Sam Oshati COMPLETION DEPTH: 20.42	/ m
		AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/18/13	
							ge 2

		Sault St. Marie - Landfill Expansion			NT: C	ty Of S	ault Ste. Marie			STHOLE NO: TH13-0	
		: 16 T Easting: 704709 Northing: 5162845 UTM N 4.6 FOR: TBT Engineering Consulting Group				Tine M4				OJECT NO.: 6011762	
					<u>HOD:</u> .IT SPC		DUNTED CME 750	1 <u>, HSA 194 mm</u> NO RE		EVATION (m): 307.70 RY)
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SPT (0 20 16 17	★ Becker ★ Dynamic Cone ◊ (Standard Pen Test) ♦ (Blows/300mm) 40 60 80 100 ITotal Unit Wt ■ (kN/m³) 18 19 20 2' tite MC Liquid 10	+ Torvane + × QU × □ Lab Vane □ △ Pocket Pen. 4 ④ Field Vane ④ 1 (kPa)	2	COMMENTS	
0		SAND and GRAVEL (FILL) - trace organic - brown, loose, dry to moist	Γ				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	17777 2		
1		- medium to coarse grained MUNICIPAL SOLID WASTE (MSW) - black, wet									
2										· · ·	
3											
1											
ō											
6			X	S37	27		×			SPT 12, 20, 7 blows/150 mm	
,										SPT Recovery 54%	
}											
)											
10		trace cand brown maint		7							
1		- trace sand, brown, moist	X	S38	60		•			SPT 44, 45, 15 blows/150 mm SPT Recovery 17%	
2											
3		trace to some could trace activities the first of 40.7 m		7						- - - -	
4		- trace to some sand, trace cobbles, dry below 13.7 m	X	S39	30		•			SPT 13, 16, 14 blows/150 mm SPT Recovery 21%	
5	\boxtimes					1000	ED BY: Sam Osh	lati C		ETION DEPTH: 20.42 m	
		AECOM					EVED BY: Sam Osh EWED BY: Zeyad			ETION DEPTH: 20.42 m ETION DATE: 6/19/13	
							ECT ENGINEER:			Page	_

		Sault St. Marie - Landfill E				IT: C	ity Of	Sault	Ste. N	<i>l</i> arie					STHOLE NO: TH13-0	
		-	thing: 5162845 UTM N 4.6			00	-								OJECT NO.: 6011762	
	PLE TY	OR: TBT Engineering Cor PE GRAB				OD: T SPC					<u>, HS</u>	<u>\ 194 n</u>	nm NO REC		EVATION (m): 307.70 RY	J
DEPTH (m)	SOIL SYMBOL		SCRIPTION	SAMPLE TYPE		SPT (N)	P ◆ SP 0 2 16 17 P	ENETR * B Oyna T (Stan (Blow 0 40 T Tota (H	ATION TE ecker # mic Cone dard Pen s/300mm 60 I Unit Wt sN/m ³) 19 MC Li	STS e	• 00 21	-	EAR STREM vane + U × vane □ t Pen. △ Vane € Pa)	NGTH	COMMENTS	
15 -16 -17 -18				X	S40	67			•						SPT 32, 17, 50 blows/150 mm SPT Recovery 43%	2 2 2 2 2 2 2
-19 -20 -21		- some sand, moist below 19.8 END OF TEST HOLE AT 20.4 r NOTES: 1. Seepage observed at 1.5 m b	n IN MSW. below surface.		S41	72									SPT 7, 24, 48 blows/150 mm SPT Recovery 58%	2
-22 -23		2. Test hole sloughed in with ga	rbage upon completion.													2
-24																2
25																2
-27																2
28 29																2
30							LOG		BY: Sa					MPI	ETION DEPTH: 20.42 m	2
		AECO	Μ				REV	IEWE	D BY:	Zeyad	Shukr				ETION DATE: 6/19/13 Page	

Image: Solution of the set of the s	TESTHOLE NO: TH13	
SAMPLE TYPE GRAB SHELEY TUBE SPLIT SPOON BULK M Image: Solution of the second s	PROJECT NO.: 60117	
Image: Solution of the sector of the sect	ELEVATION (m): 279.0 RECOVERY)0
0 SAND (Lower) - trace graving trace solit, trace cobble - brown, loss to dense, moist 1 -2 - moist to dry, trace cobble below 2.0 m -3 -4 -5 - pinkish brown, dense to very dense, moist, fine grained below -5 -6 -7 -8 -9 -10 -11 -12	STRENGTH + s D n. A COMMENTS	
 - moist to dry, trace cobble below 2.0 m - moist to dry, trace cobble below 2.0 m S43 98 - pinkish brown, dense to very dense, moist, fine grained below - pinkish brown, dense to very dense, moist, fine grained below S44 57 S45 44 S46 53 S46 53 - wet, medium to coarse grained below 9.6 m - wet, medium to coarse grained below 9.6 m - fine grained, trace oxidation S48 38 		2
 4 5 6 7 8 9 - wet, medium to coarse grained below 9.6 m - fine grained, trace oxidation S48 38 S48 38 S48 S48<td>SPT 2, 2, 2 blows/150 mm SPT Recovery 21%</td><td>2</td>	SPT 2, 2, 2 blows/150 mm SPT Recovery 21%	2
5 4.6 m 6 8 9 10 10 $-$ fine grained, trace oxidation 12 12	SPT 16, 50, 48 blows/150 mm SPT Recovery 25%	2
7 8 9 10 - wet, medium to coarse grained below 9.6 m 11 12 - fine grained, trace oxidation 12 12 545 44 \bullet	SPT 9, 23, 34 blows/150 mm SPT Recovery 86%	
 8 9 9 10 11 12 8 9 <li< td=""><td>SPT 5, 20, 24 blows/15 mm SPT Recovery 96%</td><td></td></li<>	SPT 5, 20, 24 blows/15 mm SPT Recovery 96%	
10 - wet, medium to coarse grained below 9.6 m 11 12 12 12 12 12 13 14 15 16 17 18 19 10 12 12 13 14 15 16 17 18 19 19 10 10 12 12 13 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 18 <td>SPT 7, 25, 28 blows/15 mm SPT Recovery 100%</td> <td></td>	SPT 7, 25, 28 blows/15 mm SPT Recovery 100%	
	SPT 8, 15, 21 blows/15 mm SPT Recovery 100%	
	SPT 5, 15, 23 blows/150 mm SPT Recovery 79%	
13 14 - very dense below 14 m	SPT 30, 54, 51 blows/150 mm SPT Recovery 100%	
15 LOGGED BY: Sam Oshati REVIEWED BY: Zeyad Shukri	COMPLETION DEPTH: 20.12 COMPLETION DATE: 6/19/13	

		Sault St. Marie - Landfill Expansion			IT: Ci	City Of Sault Ste. Marie TESTHOLE NO: TH13-0	
		16 T Easting: 704486 Northing: 5162490 UTM N 6.1 E FOR: TBT Engineering Consulting Group				PROJECT NO.: 6011762	
	LE TY				OD: T SPO	Tire Mounted CME 750, HSA 194 mm ELEVATION (m): 279.00 OON ■BULK ✓ NO RECOVERY ■ CORE)
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH	
15 -16 -17 -18 -19		- silty, trace clay below 17.0 m - Gravel: 0.0%, Sand: 56.8%, Fines: 43.2%	X	Š50	60/ 102mm		2 2 2 2 2 2
-20 -21 -22 -23 -24		 END OF TEST HOLE AT 20.1 m IN SAND. NOTES: 1. Seepage observed at 9.6m below ground surface. 2. Sand blowup observed at 13.7 m below ground surface upon completion. 4. Test hole backfilled with auger cuttings after drilling. 	×	351	71/ 102mm		2 2 2 2 2 2 2
-25 -26							2
27							2
-28							
-29 30							2
		A=COM				LOGGED BY: Sam Oshati COMPLETION DEPTH: 20.12 m	1
		AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/19/13 PROJECT ENGINEER: Rick Talvitie Page	

		Sault St. Marie - Landfill Expansion		LIEN	IT: Ci	ty Of Sa	ult Ste. Marie	е				STHOLE NO: TH13-0	
		16 T Easting: 5163073 Northing: 704604 UTM N 7.6 E										OJECT NO.: 6011762	
		TOR: TBT Engineering Consulting Group					Inted CME 7	′50, H				EVATION (m): 309.50)
SAMP	LE TY	(PE GRAB SHELBY TUBE		SPLI	T SPO		BULK]NO RE			
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	 ◇ D¹ ◆ SPT (S 0 20 ■ T 16 17 	TRATION TESTS K Becker ₩ /namic Cone √namic Cone √ kandard Pen Test; /ows/300mm) 40 60 80 otal Unit Wt (kN/m³) 18 19 20 MC Liquid 40 60 80	t) ✦ 100 21	× (□ Lab △ Pock � Field (H	HEAR STR rvane + QU × Vane □ cet Pen. △ d Vane		COMMENTS	
0 -1	<u>2222</u> 4 4	TOPSOIL - rootlets, some sand, some gravel, trace cobble - dark brown to brown, loose, moist SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, very dense, moist - medium to coarse grained	r			20						У 	3
-2		- moist to wet below 1.8 m	X	S52 S53	50/ 102mm			*				SPT 50 blows/102 mm SPT Recovery 25%	3
-3				054	50/					• • • • • • • • • • • • • • • • • • • •		SPT 50 blows/76 mm	3
-4		- cobbly below 3.0 m	×	S54	76mm			>> •				SPT 50 blows/76 mm SPT Recovery 17%	3
-5			\ge	S55 G56	52/ 102mm			->>-				SPT 10, 52 blows/150	3
6		END OF TEST HOLE AT 5.2 m IN SAND and GRAVEL. NOTES: 1. Power auger refusal at 5.2 m below ground surface in SAND and GRAVEL.		600								SPT Recovery 82%	3
-7		 No seepage was observed during drilling. Test hole open to 3.6 m below ground surface upon completion. Test hole backfilled with auger cuttings after drilling. 											3
8													3
.9													3
·10													
-11													2
-12										•••••••••••••••••••••••••••••••••••••••		· · · ·	2
13												· · · ·	2
													2
14												· · · ·	2
IJ	<u> </u>				I	LOGGE	DBY: Sam O	Dshati		CC	OMPL	ETION DEPTH: 5.18 m	
		AECOM					VED BY: Zeya		1.1	0		ETION DATE: 6/20/13	

			St. Marie - Landfill Expan				IT: Ci	ty Of	Sault Ste. N	Marie			ESTHOLE NO: TH13-0	
			Easting: 704240 Northin	•									ROJECT NO.: 6011762	
			TBT Engineering Consult								HSA 194 mm		EVATION (m): 281.40	1
SAMF			GRAB			-	IT SPO	UN	BUL					
васк		TYPE	BENTONITE	GRAVEL	<u> </u>]slo	UGH	_	GRO				SAND	Τ
DEPTH (m)	SOIL SYMBOL		SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP ⁻ 0 20 16 17	■ Total Unit Wt (kN/m ³) 18 19 astic MC L	e	UNDRAINED SHEAR S + Torvane - × QU × □ Lab Vane △ Pocket Pen � Field Vane (kPa) 50 100	+ □ . △	COMMENTS	
0			SAND and GRAVEL - some of	obbles, trace silt							·····			
-1			- brown, very dense, moist - medium to coarse grained		X	S57	95	•		•			SPT 13, 45, 50	2
-2 -3			- Gravel: 48.5%, Sand: 43.1%	5, Fines: 8.4%		S58	50/						blows/150 mm SPT Recovery 100% SPT 25, 50 blows/150	2
-4							76mm						mm SPT Recovery 100%	2
-5			SAND (Lower) - trace to some - brown, very dense, moist - fine grained	e silt, trace gravel		S59	52/ 102mm						SPT 28, 52 blows/150 mm SPT Recovery 100%	
-7						S60	76	•		•			SPT 12, 30, 46 blows/150 mm SPT Recovery 96%	
8			- pinkish brown, fine to mediu	m grained below 7.6 m		S61	66	•	•				SPT 13, 30, 36 blows/150 mm SPT Recovery 96%	
-9 -10					X	S62	69			×			SPT 12, 29, 40 blows/150 mm SPT Recovery 86%	
-11			- dense below 10.7 m		X	S63	42	•	•				SPT 10, 19, 23 blows/150 mm SPT Recovery 92%	:
-12 -13					X	S64	40	•	•				SPT 8, 19, 21 blows/150 mm SPT Recovery 86%	:
-14														
15									055 -:		······	<u></u>		L
				4					GED BY: Sa				ETION DEPTH: 24.99 m	I
			AECON						IEWED BY: JECT ENGIN			COIVIPL	ETION DATE: 6/21/13 Page	4

			St. Marie - Landfill Expan				NT: C	ity O	f Sault Ste. Marie	9			STHOLE NO: TH13-0	
			Easting: 704240 Northin	•				T : 1			104		ROJECT NO.: 6011762	
			TBT Engineering Consul							<u>50, HSA</u>			EVATION (m): 281.40	
SAMP			GRAB				IT SPO	NUN	BULK		<u> </u>	RECOVE		
BACK	FILL	TYPE	BENTONITE	GRAVEL	Щ	∐SLC	DUGH	1	GROUT			TTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	WELL	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	Plastic MC Liquid)◆ 100 ∠	+ Torvane X QU X ☐ Lab Van Pocket Pe Field Var (kPa)	< e □ en. △	COMMENTS	Ĩ
15					\times	S65	57/ 76mm	•		»	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SPT 19, 57 blows/150	2
			- trace to some cobbles, very	dense at 15.4 m		1	76mm				•••••		mm SPT Recovery 100%	
16												· · · · · · · · · · · · · · · · · · ·	SFI Recovery 100%	
									· · · · · · · · · · · · · · · · · · ·	•••••	••••••			2
47													2 2 2	
-17											· · · · · · . · · · · · · .			
											· · · · · · · · · · · · · · · · · · ·	·····		
18									· · · · · · · · · · · · · · · · · · ·		•••••			
			- dense, wet, medium to coar	se grained below 18.3 m		S66	39				·····		SPT 8, 18, 21 blows/150	
10					\vdash	500					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	mm	
19									· · · · · · · · · · · · · · · · · · ·		••••••	· · · · · · · · · · · · · · · · · · ·	SPT Recovery 75%	
20														
												· · · · · · · · · · · · · · · · · · ·		
									· · · · · · · · · · · · · · · · · · ·		••••••	••••		
-21														
			- fine to medium grained belo	w 21.3 m	$\mathbf{\nabla}$	S67	44						SPT 6, 16, 28 blows/150	2
-22		-				×			ā		· · · · · · ·	· · · · þ · · · · · ·	mm SPT Recovery 92%	
											· · · · · · · · · · · · · · · · · · ·	•••••		
		-												
23														
		_									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		:
24											•••••			
											· · · · · · · · · · · · · · · · · · ·			
			- Gravel: 0.1%, Sand: 86.6%	, Fines: 13.3%	X	S68	43		●		· · · · · · · · · · · · · · · · · · ·		SPT 12, 20, 23 blows/150 mm	
25											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SPT Recovery 50%	
			END OF TEST HOLE AT 25								· · · · · · · · · · · · · · · · · · ·			:
26			NOTES:								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			 Seepage observed at 18.3 Sand blowup observed at 2 	21.3 m below ground surface					· · · · · · · · · · · · · · · · · · ·		· · · · · ·			
			3. Installed 25 mm diameter i with 4.6 m screen from 21 to	monitoring well (MW13-01)							••••••	·····		
27			and 0.8 m stick-up.	-							•••••			
			 Above ground protective c Test hole blown-up with na 								· · · · · · · · · · · · · · · · · · ·			
28			backfilled with well gravel to to 14 m followed by auger cu	17.4 m, sealed with bentonite								· · · · · · · · · · · · · · · · · · ·		
			7.3 m followed by auger cutti	ngs to 2.7 m, sealed to 0.10	~				·		•••••	· · · · · · · · · · · · · · · · · · ·		
			m and concreted to ground see. Ground water monitoring:											
29			- June 22, 2013 at 18.34 m - June 23, 2013 at 18.33 m	n (Elev. 263.7)							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			- June 25, 2013 at 17.47 m	(Elev. 264.5)								· · · · · · · · · · · · · · · · · · ·		
30											•••••			
				4					GGED BY: Sam O				ETION DEPTH: 24.99 m	
			AECON						/IEWED BY: Zeya DJECT ENGINEEF		مناشرا		ETION DATE: 6/21/13 Page	_

			St. Marie - Landfill Expansi				IT: Ci	ty Of Sa	ault Ste. Marie	9		STHOLE NO: TH13-0	
			Easting: 704086 Northing:									OJECT NO.: 6011762	
SAMF			TBT Engineering Consultin				IOD: IT SPO		UNTED CME 7	50, HSA 194 mm	EL RECOVE	EVATION (m): 291.70 RY	<u> </u>
BACK			BENTONITE	GRAVEL	_				GROUT				
DEPTH (m)	SYMBOL	WELL	SOIL DESC		TYPE	E#	SPT (N)	♦ D ♦ SPT (S	TRATION TESTS # Becker # ynamic Cone tandard Pen Test lows/300mm)	UNDRAINED SHEAR + Torvane × QU ×	STRENGTH +		ELEVATION
DEP			TOPSOIL - rootlets, some sand,		SAMPLE	SAM	SP ⁻		Total Unit Wt ■ (kN/m ³) 18 19 20	21 (kPa)			ELEV
-1			cobble, trace clay - dark brown to brown, moist SAND (Upper) - trace gravel, tra - brown, compact, moist - medium to coarse grained	-		7							291 -
2			SAND and GRAVEL - some cob	bles	_	S69	13					SPT 2, 6, 7 blows/150 mm SPT Recovery 63%	290 -
-3			- brown, dense to very dense, m - medium to coarse grained	oist		S70	50/ 76mm			**		SPT 13, 50 blows/150 mm SPT Recovery 44%	288 -
5			SAND (Seam) - trace silt - brown, very dense, moist - fine to medium grained - trace oxidation - Gravel: 0.0%, Sand: 90.3%, Fi SAND and GRAVEL - some cot			S71	80					SPT 16, 30, 50 blows/150 mm SPT Recovery 82%	287 -
			boulders - brown, very dense, moist - medium to coarse grained		X	S72	52/ 102mm			≫>◆		SPT 33, 52 blows/150 mm SPT Recovery 100%	286 -
8					X	S73	50/ 102mm			**		SPT 50 blows/102 mm SPT Recovery 100%	284 -
			- coarse grained below 9.1 m		\times	S74	66	•	•			SPT 19, 32, 34 blows/150 mm SPT Recovery 92%	283 -
WINN.GDT 4/18/1					\times	S75	79	•	•			SPT 23, 37, 42 blows/150 mm SPT Recovery 92%	281 -
LOG OF TEST HOLE TH LOGS-SSM FINAL. GPJ UMA WINN. GDT 4/18/14 11 11 11 11 11 11 11 11 11 11 11 11 11			SAND (Lower) - trace gravel, tra - pinkish brown, dense, moist - fine to medium grained	ce silt		S76	38	•				SPT 12, 19, 19 blows/150 mm SPT Recovery 86%	280 -
14 SS-SSOT HI HOLE TH LOCS-SS													278 -
LSH 15		ИИ						1000	ED BY: Sam C)chati	COMP	ETION DEPTH: 33.53 m	
OF T			AECOM						VED BY: Zeya			ETION DEPTH: 33.33 III ETION DATE: 6/22/13	
200										R: Rick Talvitie			1 of 3

PROJ	ECT:	Sault	St. Marie - Landfill Expansi	ion	C	LIEN	IT: C	ity O	Sault Ste. Marie		TE	STHOLE NO: TH13-0	8
			Easting: 704086 Northing:									OJECT NO.: 6011762	
			TBT Engineering Consultin	• •					Mounted CME 750			EVATION (m): 291.70	
SAMP			GRAB		_	_	T SPO	ON			RECOVE		
BACK	FILL	IYPE	BENTONITE	GRAVEL	Ш	SLO	UGH		GROUT	СОТ		SAND	1
DEPTH (m)	SOIL SYMBOL	WELL	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	PENETRATION TESTS ★ Becker ★ < Dynamic Cone <> T (Standard Pen Test) ◆ (Blows/300mm) 20 40 60 80 100 ■ Total Unit Wt ■ Total Unit Wt ■ 7 18 19 20 21 Plastic MC Liquid 20 40 60 80 100	 Field Vane (kPa) 	+ □ △	COMMENTS	ELEVATION
= 15			- very dense below 15 m			1							-
-16						S77	55					SPT 13, 26, 29 blows/150 mm SPT Recovery 86%	276
-17		88											215
-18													274 -
- 			- trace cobble below 18.6 m			S78	49	•				SPT 8, 19, 30 blows/150 mm SPT Recovery 92%	273 -
													272
-21			- trace to some gravel, coarse g	reigned because below 21.2		2						· · ·	271 -
-22			m	raineu, biown below 21.3	X	S79	99	•				SPT 22, 48, 51 blows/150 mm SPT Recovery 100%	270 -
-23												· · · ·	269 -
-24			- fine to medium grained below	24.4 m								· · · ·	268 -
1/81/			-										267 -
WINN.GDT 4			- dense below 25.9 m		X	S80	35	•				SPT 10, 17, 18 blows/150 mm SPT Recovery 96%	266
													265 -
EINE 28 28 28 28													264 -
LOG OF TEST HOLE TH LOGS-SSM FINAL.GPJ UMA WINN GDT 4/18/14 00 06 07 07 08 08 07 07 09 08 08 08 08 08 08 08 08 08 08 08 08 08		r⊿ ⊻ r∕ 											263
	1. 1.					1		LO	GGED BY: Sam Osh	ati	COMPL	ETION DEPTH: 33.53 m	·
G Q			AECOM						/IEWED BY: Zeyad S		COMPL	ETION DATE: 6/22/13	
2								PR	DJECT ENGINEER:	Rick Talvitie		Page	2 of 3

PROJ	ECT:	Sault	St. Marie - Landfill Expans	sion	С	LIEN	T: C	ity Of S	Sault	Ste.	Marie			Т	ESTHOLE NO: TH13-0)8
			Easting: 704086 Northing		E 0.	3								P	ROJECT NO .: 6011762	27
			TBT Engineering Consulti								ME 750	, HSA			LEVATION (m): 291.70)
SAMF			GRAB				T SPC	ON	· ·	BU				O RECOV		
BACK	FILL	TYPE	BENTONITE	GRAVEL	Ш]slo	UGH		-		OUT			UTTINGS	SAND	1
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SPT 0 20	(Blows) 40 Total (kN 18 stic	cker ic Co ard Pe /300m 60 Unit V I/m ³) 19	₩ nne <> en Test) nm) 80 100 Vt 20 21 Liquid	2 2	NED SHEA + Torvar × QU □ Lab Va △ Pocket F ④ Field Va (kPa 0 100	× ine □ ⊃en. △ ane €)		ELEVATION
30			- trace gravel, very dense, wet		X	S81	69				•				SPT 9, 27, 42 blows/150 mm SPT Recovery 92%	261 -
-32																259 -
-34			END OF TEST HOLE AT 33.5 NOTES: 1. Seepage observed at 30.5 n 2. Sand blowup observed at 30 3. Installed 25 mm monitoring screen from 30.5 to 33.5 m bel	n below ground surface.).5 m below ground surface.												258 - 257 -
-35			screen from 30.5 to 33.5 m bei m stick-up. 4. Above ground protective cas 5. Test hole blown-up with nati backfilled with well gravel to 25 to 28.8 m followed by auger cu	sing installed. ve sand to 33.2 m, 9.7 m, sealed with bentonite											· · · · · · · · · · · · · · · · · · ·	256 -
-37			sealed with bentonite to 17.7 n to 9.4 m, sealed with bentonite cuttings to 1.1 m, then sealed concreted to ground surface. 6. Ground water monitoring:	n followed by auger cuttings to 8.8 m, followed by auger												255 -
-38			- June 22, 2013 at 29.68 m i - June 25, 2013 at 28.76 m i	(Elev. 261.3) (Elev. 262.9)												254 -
-39														· · · · · · · · · · · · · · · · · · ·		253 -
4/18/14																252 - 251 -
LOG OF TEST HOLE TH LOGS-SSM FINAL CPJ UMA WINN GDT 418/14																250 -
HINAL GPJ																249 -
SS-S901 HI 3																248 -
													,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	247 -
15 - 45 II	1			_				LOGG	ED E	Y: 5	Sam Osh	ati	<u></u>	COMF	LETION DEPTH: 33.53 m	<u>י</u> ו
Р C			AECOM					REVIE	EWED	BY:	Zeyad	Shukri			PLETION DATE: 6/22/13	
ğ				-				PROJ	ECT	ENG	INEER:	Rick Ta	alvitie		Page	3 of 3

		Sault St. Marie - Landfill Expansion			T: Ci	ty Of	Sau	lt Ste	e. Ma	arie					ESTHOLE NO: TH13-0	
		16 T Easting: 704174 Northing: 5162703 UTM N 12.2 TOR: TBT Engineering Consulting Group			00				~~~~						ROJECT NO.: 6011762	
										750), HS/	<u>\ 194</u>			LEVATION (m): 293.50)
SAIVIP		PE GRAB SHELBY TUBE		JSPLI	T SPO			В				×	-	RECOV		1
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17 P	₩ > Dyn T (Sta (Blov 0 4 ■ Tot 18 lastic	Becke amic (ndard ws/300 0 6 al Uni (kN/m 3 1 MC	Cone < Pen To Omm) 50 8 t Wt ■ 9 2 Liqu	> est) ♦ 80 100	0	+ To × I □ Lab △ Pock ● Field (H	rvane - QU × Vane ket Pen	□ . Δ	COMMENTS	
0	2222	TOPSOIL - rootlets, some sand, some gravel, trace cobble, trace clay - dark brown to brown, moist	r								· · · · · · ·				· · · · · · · · · · · · · · · · · · ·	2
-1		SAND (Upper) - some gravel, trace silt - brown, compact, moist - medium to coarse grained					· · · · · · ·					• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••		2
2		- Gravel: 13.1%, Sand: 82.6%, Fines: 4.3%	X	S82	22	•								· · · · · · · · · · · · · · · · · · ·	SPT 3, 11, 11 blows/150 mm SPT Recovery 71%	
3		SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, compact to dense, moist - medium to coarse grained		S83	47		· · · · · · ·	•							SPT 6, 18, 29 blows/150	
4							· · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SPT Recovery 43%	
5		SAND (Lower) - trace gravel, trace silt - pinkish brown, dense, moist - fine to medium grained	X	S84	48	•		•							SPT 10, 19, 29 blows/150 mm SPT Recovery 75%	
6		- trace gravel, trace cobble, very dense below 6.4 m	X	S85	58	•									SPT 19, 23, 35 blows/150 mm SPT Recovery 83%	
7 8			X	S86	68	•	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		SPT 66, 34, 34	:
9												· · · · · · · · · · · · · · · · · · ·			blows/150 mm SPT Recovery 85%	:
10			\times	S87	55	•	· · · · · · · · · · · · · · · · · · ·	٠			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		SPT 30, 25, 30 blows/150 mm SPT Recovery 83%	2
11				S88	64	•	· · · · · · · · · · · · · · · · · · ·		•						SPT 13, 26, 38 blows/150 mm	2
12															SPT Recovery 92%	
13							· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		
14		- some gravel, medium to coarse grained sand below 13.7 m	\times	S89	51/ 76mm		· · · · · · ·								SPT 44, 51 blows/150	:
15							· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SPT Recovery 89%	:
									Sam						LETION DEPTH: 27.99 m	1
		AECOM									Shuki	i Falvitie		COMP	PLETION DATE: 6/23/13 Page	

		Sault St. Marie - Landfill Expansion			NT: Ci	ty Of	Sau	lt St	e. Marie				STHOLE NO: TH13-(
		: 16 T Easting: 704174 Northing: 5162703 UTM N 12.2											OJECT NO.: 601176	
		TOR: TBT Engineering Consulting Group), HS/	<u>A 194 mm</u>		EVATION (m): 293.50	0
SAMP		(PE GRAB SHELBY TUBE			IT SPO				BULK	1				
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	₩ I ◇ Dyna ◇ T (Star (Blow 20 4 ■ Tot: (7 18 Plastic	Becke amic (ndard ws/30 0 (al Uni (kN/m 3 1	Cone Pen Test) Omm) 60 80 10 t Wt 3) 9 20 2 Liquid	0	AINED SHEAR S + Torvane + × QU × □ Lab Vane △ Pocket Pen. ④ Field Vane (kPa) 50 100	+ ⊐ . △	COMMENTS	
15											· · · · · · · · · · · · · · · · · · ·			
									· · · · · · · · · · · · · · · · · · ·					2
-16											• • • • • • • • • • • • • • • • • • • •)))		
									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			X	S90	51/ 127mm				>	•			SPT 51 blows/127 mm	'
17					12/1101							·	SPT Recovery 100%	
									·····		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
18									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
												· · þ. · · · · · · · · · · · · · · · · ·		'
19														
										· · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
20			\times	S91	53/ 127mm				»	•		· · · · · · · · · · · · · · · · · · ·	SPT 53 blows/127 mm	
									·····	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	SPT Recovery 100%	
									· · · · · · · · · · · · · · · · · · ·	• • • • • • •		••••••••		
-21									· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
-22														
							(* * * * * * * (* * * * * * *		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	••••••••		
									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
-23														
											• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
-24									· · · · · · · · · · · · · · · · · · ·			•••		
27					51/				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
		- fine grained below 24.4 m	\geq	S92	76mm					•			SPT 33, 51 blows/150 mm	
25									·····		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	SPT Recovery 100%	
									· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
26														
20									· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·		
									· · · · · · · · · · · · · · · · · · ·		· } · · · · · · · · · · · · · · · · · ·))		
-27														
		- silty, some gravel, greyish brown, moist below 27.4 m							· · · · · · · · · · · · · · · · · · ·					
.20				S93	53/				»	••••••		·	SPT 53 blows/102 mm	
-28		END OF TEST HOLE AT 28 m ON SUSPECTED BEDROCK. NOTES:			102mm						• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	SPT Recovery 63%	
		1. Power auger refusal at 28 m below ground surface in SAND.							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			:
-29		 No seepage observed during drilling. Test hole open to 17.1 m below ground surface upon 												
		completion. 4. Test hole backfilled with auger cuttings after drilling.									· · · · · · · · · · · · · · · · · · ·			
30		T. TOULTION DECEMBED WITT EUGEL CULLINGS ELLER UTILITY.					 				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
~~	· 1			1					Sam Osł				ETION DEPTH: 27.99 m	n
		AECOM				RE\	/IEW	ED B	Y: Zeyad	Shukr	i	COMPL	ETION DATE: 6/23/13	

		Sault St. Marie - Landfill Expansion			NT: C	ity Of Sault Ste. Marie		TESTHOLE NO: TH13-1	
		: 16 T Easting: 704292 Northing: 5162874 UTM N 13.7						PROJECT NO.: 6011762	
		TOR: TBT Engineering Consulting Group				Tire Mounted CME 750,		ELEVATION (m): 302.00)
SAMP	LET	(PE GRAB SHELBY TUBE		SP	LIT SPO			COVERY CORE	-
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR STRI + Torvane + × QU × □ Lab Vane □ △ Pocket Pen. △ � Field Vane � (kPa) 50 100 15/	COMMENTS	
0	3333	TOPSOIL - rootlets, some sand, some gravel, trace cobble, trace					30 100 13		-
-1		Clay - dark brown to brown, moist, soft SAND (Upper) - trace gravel, trace silt - brown, compact, moist - medium to coarse grained						· · · · · · · · · · · · · · · · · · ·	3
-2		SAND and GRAVEL - some cobbles	F					· · · · · · · · · · · · · · · · · · ·	3
3		- greyish brown, dense, moist - medium to coarse grained END OF TEST HOLE AT 2.47 m IN SAND and GRAVEL. NOTES:						· · · · · · · · · · · · · · · · · · ·	2
-4		 Power auger refusal at 2.5 m below ground surface in SAND and GRAVEL. No seepage observed during drilling. Test hole open to 2.5 m below ground surface upon 							2
5		completion. 4. Test hole backfilled with auger cuttings after drilling.							2
6									2
7									2
8								· · · · · · · · · · · · · · · · · · ·	2
9									:
10									2
11									2
12								· · · · · · · · · · · · · · · · · · ·	:
13									:
14									:
16							· · · · · · · · · · · · · · · · · · ·		
15				<u> </u>		LOGGED BY: Sam Osha		DMPLETION DEPTH: 2.47 m	
		AECOM				REVIEWED BY: Zeyad S PROJECT ENGINEER: I		OMPLETION DATE: 6/23/13 Page	

		Sault St. Marie - Landfill Expansion			IT: C	ty Of Sault Ste. Marie TESTHOLE NO: TH13-1	
		: 16 T Easting: 704292 Northing: 5162874 UTM N 15.2				PROJECT NO.: 6011762	
			<u> </u>	<u>NETH</u>	IOD:	Tire Mounted CME 750, HSA 194 mm ELEVATION (m): 302.00	<u> </u>
SAMP	LE T	(PE GRAB III) SHELBY TUBE		SPL	IT SPO		T
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◆ Dynamic Cone ◇ > ◆ SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■	
0		TOPSOIL - rootlets, some sand, some gravel, trace cobble, trace	_				
		- dark brown to brown, moist, soft	'			······································	
-1		SAND (Upper) - trace gravel, trace silt - brown, compact, moist					3
		- medium to coarse grained					
		°		S94	23	● ◆ SPT 2, 9, 14 blows/150	
-2			\square	001	20	mm	3
						SPT Recovery 71%	
		SAND and GRAVEL - some cobbles, trace silt - greyish brown, dense, moist					
-3		- medium to coarse grained			51/		
			¥	S95	102mm	>>• mm	
						SPT Recovery 0%	
-4						······································	2
		- pinkish brown below 4.3 m					
	•	- silty, fine grained sand, low plasticity, moist to wet below 4.6 m $$	\mathbf{X}	S96	61	SPT 7, 11, 50 blows/150	
-5						mm SPT Recovery 67%	
		END OF TEST HOLE AT 5.2 m ON SUSPECTED BEDROCK. NOTES:					
		1. Power auger refusal at 5.2 m below ground surface in SAND					
-6		and GRAVEL. 2. Seepage observed at 4.6 m below ground surface.					2
		3. Test hole open to 4.6 m below ground surface upon				·····à·····à·····à·····à·····à·····à····	
-7		completion. 4. Test hole backfilled with auger cuttings after drilling.					
'							
-8						······································	
-9							2
						······································	
-10							
-11							
-12						······································	
12							1
13						······································	
-14							
						······································	'
15							
						LOGGED BY: Sam Oshati COMPLETION DEPTH: 5.18 m	
		AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/23/13 PROJECT ENGINEER: Rick Talvitie Page	-

PROJ	ECT:	Sault	: St. Marie - Landfill Expan	sion	С	LIE	NT: C	ity Of	Saul	t Ste.	Marie			1	TESTHOLE NO: TH13-1	10C
LOCA	TION	: 16 T	FEasting: 704292 Northing	g: 5162874 UTM N 16.8				•						F	PROJECT NO .: 601176	27
			TBT Engineering Consult								ME 750	, HSA			ELEVATION (m): 302.00)
SAMF	PLE T	YPE	GRAB	SHELBY TUBE	<u> </u>		IT SPC	ON	-	BU				RECO		
BACK	FILL	TYPE	BENTONITE	GRAVEL		SLC	DUGH			GR	ROUT		CC	ITTINGS	S SAND	
DEPTH (m)	SOIL SYMBOL		SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1 F	◇ Dyna PT (Stan (Blow 20 40 ■ Tota (H	ecker ; mic Co dard Po s/300m s/300m 0 60 Il Unit V (N/m ³) 19 MC	# whee		NED SHEAF + Torvan × QU > □ Lab Var Ne Field Var (kPa) 0 100	e + ≺ ne □ en. △ ne �		ELEVATION
- 0		· · · ·	TOPSOIL - rootlets, some san cobble, trace clay - dark brown to brown, soft, m SAND - trace gravel, trace silt - brown, compact, moist - medium to coarse grained	oist												301 -
-3			SAND and GRAVEL - some c - greyish brown, dense, moist - medium to coarse grained	obbles, trace silt												299 -
-4			- silty, fine grained sand, pinkis moist to wet below 3.7 m	sh brown, low plasticity,											· · · · · · · · · · · · · · · · · · ·	298 -
-5 	· · · •	· <u> </u>	END OF TEST HOLE AT 5.0 0 BEDROCK. NOTES: 1. Power auger refusal at 5.0 0			G97										297 -
-7			SAND and GRAVEL. 2. Seepage observed at 4.6 m 3. Installed 25 mm diameter m with 3.0 m screen from 1.9 to and 0.85 m stick-up. 4. Above ground protective ca 5. Test hole backfilled with we	nonitoring well (MW13-03) 4.97 m below ground surface sing installed. Il gravel to 1.5 m, sealed												295 -
-8			with bentonite to 0.10 m and c 6. Ground water monitoring: - June 23, 2013 at 4.03 m (I - June 25, 2013 at 3.65 m (I	Elev. 299)												294 -
9																293 -
NN.GDT 4/18/14																292 - 291 -
VAL.GPJ UMA WI																290 -
LOG OF TEST HOLE TH LOGS-SSM FINAL.GPJ UMA WINN.GDT 4/18/14																289 -
<u> </u>								1.00			Sam Osh	oti		0014	PLETION DEPTH: 4.97 m	
H			AECON								: Zeyad				PLETION DEPTH: 4.97 m PLETION DATE: 6/23/13	
00											INEER:		lvitie			1 of 1

		Sault St. Marie - Landfill Expansion			NT: C	ity Of	Sault Ste. Marie		TESTHOLE NO: TH13-1	
		16 T Easting: 704586 Northing: 5162868 UTM N 18.3 FOR: TBT Engineering Consulting Group				Tie - •			PROJECT NO.: 601176	
					<u>IOD:</u> .IT SPC		Iounted CME 750 BULK	<u>, HSA 194 mm</u> NO RE	ELEVATION (m): 293.60	U
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PE	INTERATION TESTS ※ Becker ※ > Dynamic Cone ◇ (Standard Pen Test) ◆ (Blows/300mm) 40 60 7 total Unit Wt (k/m ³) 18 19 18 19 18 Liquid	UNDRAINED SHEAR STR + Torvane + × QU × □ Lab Vane □ △ Pocket Pen. △ ♥ Field Vane ♥ (kPa)	COMMENTS	
0		MUNICIPAL SOLID WASTE (MSW) - black, wet				20		50 100 15	i0 200	
1										2
2										2
3										
4										
5										:
6		END OF TEST HOLE AT 6.1 m IN MSW. NOTES:							· · · · · · · · · · · · · · · · · · ·	
7		 Seepage observed at 2.4 m below ground surface. Test hole sloughed in with garbage upon completion and sealed with betonite at ground surface. 								
8										
9										
10										
11										
12										
13									· · · · · · · · · · · · · · · · · · ·	
14										:
15							· · · · · · · · · · · · · · · · · · ·			
	I	A=COM					GED BY: Sam Osh		OMPLETION DEPTH: 6.10 m	
		AECOM					EWED BY: Zeyad S JECT ENGINEER:		OMPLETION DATE: 6/23/13 Page	. 1

			St. Marie - Landfill Expar Easting: 704581 Northin				IT: C	ity O	r Sau	lt Ste.	Marie						STHOLE NO: TH13-1 OJECT NO.: 6011762	
			TBT Engineering Consult	-				Tire	Maura	tod C		<u>л цс</u>	10	1			EVATION (m): 293.60	
			GRAB				IT SPC			BU	<u>МЕ 75</u> к	υ, Πο			RECC			,
	FILL		BENTONITE	GRAVEL						GR					ITTING			
DEPTH (m)	SOIL SYMBOL	WELL	SOIL DES		SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF	PENETF	RATION 1 Becker > amic Co	ESTS K ne ⇔n Test) • m) 80 1	•	RAINED + `		R STREN e + < ie 🗆	- 1	COMMENTS	
<u>о</u>	soll S		MUNICIPAL SOLID WASTE	(MSW) - trace sand	SAM	SA	S		((kN/m ³) 3 19 MC		<u>21</u> 00	€ F 50	ield Var (kPa) 100	ne	200		
1			 black, moist to wet trace cobbles at 0.9 m 									· · · · · · · · · · · · · · · · · · ·						2
2																		
}								· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						
			- wet below 3.7 m									· · · · · · · · · · · · · · · · · · ·						
								· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						
			- trace sand at 9.4 m		X	S97	32		۲								SPT 7, 21, 11 blows/150	
0								· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					SPT Recovery 17%	
1																		
2					X	S98	18										SPT 10, 8, 10 blows/150	
3																	SPT Recovery 17%	
4																		
5	\sim			_		1		LO	GGED	BY: S	Sam Os	hati			CON	MPLE	ETION DEPTH: 24.99 m	
			AECON								Zeyad		ri				ETION DATE: 6/24/13	

PROJ	ECT:	Sault	: St. Marie - Landfill E	Expansio	า	C	LIEN	IT: Ci	ty Of	Sault St	e. Marie			TE	STHOLE NO: TH13-1	1B
			Easting: 704581 No						-					PR	ROJECT NO.: 6011762	27
			TBT Engineering Co	onsulting								0, HSA	<u>194 mm</u>		EVATION (m): 293.60)
SAMP			GRAB			-		IT SPO	ON		BULK		-	RECOVE		
BACK	FILL	TYPE	BENTONITE	-	GRAVEL	Щ	SLO	UGH			GROUT		Спс		SAND	1
DEPTH (m)	SOIL SYMBOL	WELL INSTALLATION	SOIL D	ESCR	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1 F	■ Total Un (kN/m 7 18 Plastic MC	er ₩ Cone ◇ Pen Test) · 0mm) 60 80 1 it Wt ■ ³) 19 20 Liquid	◆ <u>00</u> ∠	NED SHEAR S + Torvane × QU × □ Lab Vane △ Pocket Per ● Field Vane (kPa) 0 100	+ - 🗆 n. 🛆	COMMENTS	ELEVATION
- 15 			SAND (Lower) - trace d - brown to pinkish brow	n, dense, n	noist											278
-17			- fine to medium graine	d			S99	44	•	•					SPT 10, 19, 25 blows/150 mm	277
-18			- pinkish brown, mediur	m grained b	elow 17.4 m								· · · · · · · · · · · · · · · · · · ·		SPT Recovery 63%	276
-19			- wet below 18.9 m			\geq	S100	35		•					SPT 11, 18, 17 blows/150 mm SPT Recovery 63%	275 -
20															· · · ·	274
-21															· · ·	273
-22			- compact, fine grained	below 21.3	5 m	\times	S101	15		•					SPT 3, 6, 9 blows/150 mm SPT Recovery 100%	272
-23															· · ·	271 -
-24																270 -
- 25			END OF TEST HOLE	AT 24.99 m	IN SAND.		S102	14							SPT 1, 5, 9 blows/150 mm SPT Recovery 75%	269
1.GDT 4/18/1			NOTES: 1. Seepage observed a sand. 2. Sand blowup observe	ed at 21.3 i	n below ground surface.											268 -
LOG OF TEST HOLE TH LOGS-SSM FINAL. GPJ UMA WINN. GDT 4/18/14 00 66 87 22 25 25 25 25 25 25 25 25 25 25 25 25			 Methane effervescer Installed 25 mm dian with 10.7 m screen from surface and 0.90 m stict Above ground protect 	neter monit n 3.0 to 13. k-up.	oring well (MW13-04) 7 m below ground											267 -
SSM FINAL.GF			 Test hole sloughed a sealed with bentonite to to 2.7 m, sealed with be ground surface. 	at 19.2 m be o 13.7 m, b entonite to	ackfilled with well gravel 0.10 m and concreted to											266
S-SDOTHI 29			7. Leachate level monit - June 25, 2013 at 8.		285.4)											265
30									1.00	GED BY:	Sam Os		· · · · · · · · · · · · · · · · · · ·		ETION DEPTH: 24.99 m	264
Ъ			AECC	M						IEWED E					ETION DATE: 6/24/13	
LOG										DJECT EN	-		alvitie			2 of 2

		Sault St. Marie - Landfill Expansion			NT: C	City (Of Sault Ste. Marie				
		: 16 T Easting: 704338 Northing: 5162831 UTM N 21.3							PROJECT N		
							Mounted CME 750				1
SAMP		YPE GRAB SHELBY TUBE		SF	LIT SPC		BULK			CORE	-
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPI F #	SPT (N)	◆ : 0 16	※ Becker ※ ◇ Dynamic Cone ◇ SPT (Standard Pen Test) ◆ (Blows/300mm) 20 40 60 80 100 ■ Total Unit Wt ■ (KN/m³)	 In Focket Feill 2 In Focket Feill 2		MENTS	
0	\$\$\$\$	TOPSOIL - rootlets, some sand, trace gravel, trace cobble, trace	r						· · · · · · · · · · · · · · · · · · ·		
		- dark brown to brown, soft, moist))		2
1		SAND (Upper) - some gravel, trace cobble, trace silt - brown, compact, moist							,		
		- medium to coarse grained									2
	•	SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, very dense, moist									2
-2	4. 4.	- medium to coarse grained					• • • • • • • • • • • • • • • • • • • •				
							· · · · · · · · · · · · · · · · · · ·				2
-3									- 		
5											
		END OF TEST HOLE AT 3.5 m IN SAND and GRAVEL.	_								2
-4		NOTES: 1. Power auger refusal at 3.5 m below ground surface in SAND					• • • • • • • • • • • • • • • • • • • •		2		
		and GRAVEL.							- 		2
		 No seepage observed during drilling. Test hole open to 3.5 m below ground surface upon 							· · · · · · · · · · · · · · · · · · ·		
5		completion.) 		
		4. Test hole backfilled wih auger cuttings after drilling.							5 · · · · · · · · · · · · · · · · · · ·		2
-6									- 		
0									· · · · · · · · · · ·		
											2
7							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5 · · · · · · · · · · · · · · · · · · ·		
											2
									· · · ·		
8								· · · · · · · · · · · · · · · · · · ·			
							······································	· · · · · · · · · · · · · · · · · · ·	5 · · · · · · · · · · · · · · · · · · ·		
9								· · · · · · · · · · · · · · · · · · ·	1		
5											
								· · · · · · · · · · · · · · · · · · ·			2
10									5		
									1		
									· · · · · · · · · · · · · · · · · · ·		
11								· · · · · · · · · · · · · · · · · · ·			
									5 5		
12									1		
									· · · · · · · · · · · · · · · · · · ·		
13											
									• • • • • • • • • • • • • • • •		
									* * * * * * * * *		
14											
							•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	2 · · · · · · · · · · · · · · · · · · ·		
15									5 7		
_	_		_	_			OGGED BY: Sam Osh		OMPLETION DEP		
		AECOM					EVIEWED BY: Zeyad S ROJECT ENGINEER:		OMPLETION DAT	E: 6/24/13 Page	

		Sault St. Marie - Landfill Expansion			ENT	: Ci	ity Of Sault Ste. Marie TESTHOLE NO: TH1	
		: 16 T Easting: 704336 Northing: 5162743 UTM N 22.9					PROJECT NO.: 6011	
		TOR: TBT Engineering Consulting Group					Tire Mounted CME 750, HSA 194 mm ELEVATION (m): 292	.50
SAMF	PLE TY	(PE GRAB SHELBY TUBE		<u>(</u> SF	PLIT	SPO		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPI F #		SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker * ◆ Dynamic Cone ◇ + Torvane + ◆ SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ □ APocket Pen. △ ● Field Vane ● (KPa) ● Field Vane ● (KPa)	
0	<u>>>>></u>	TOPSOIL - rootlets, some sand, trace gravel, trace cobble, trace	-					
-1		clay - dark brown to brown, moist, soft SAND (Upper) - trace gravel, trace silt, trace cobble - brown, moist, compact - medium to coarse grained						2
2								
-3		SAND and GRAVEL - some cobbles, trace silt, trace boulders - brown, dense, moist - medium to coarse grained						
4								
5	•	SAND (Lower) - trace gravel, trace silt - pinkish brown, compact, moist	_					
6		- medium to coarse grained						
7								:
8								:
9								
10								
11 12								
12								
14								
15								
		AECOM					LOGGED BY: Sam Oshati COMPLETION DEPTH: 15.3 REVIEWED BY: Zeyad Shukri COMPLETION DATE: 6/25/1	
								age 1 (

		Sault St. Marie - Landfill Expansion			NT: C	Sault Ste. Marie		TESTHOLE NO: TH13-1	
		: 16 T Easting: 704336 Northing: 5162743 UTM N 22.9 I						PROJECT NO.: 6011762	
SAMP		FOR: TBT Engineering Consulting Group YPE GRAB SHELBY TUBE				Nounted CME 750, H	SA 194 mm	ELEVATION (m): 292.50)
						 ※ Becker ※ > Dynamic Cone <> T (Standard Pen Test) ◆ 	DRAINED SHEAR STRE + Torvane + × QU × □ Lab Vane □	ENGTH	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	(Blows/300mm) 0 40 60 80 100 ■ Total Unit Wt ■ (kN/m) 7 18 19 20 21 lastic MC Liquid 0 40 60 80 100	 △ Pocket Pen. △ ④ Field Vane ④ (kPa) 50 100 150 	COMMENTS	
15		END OF TEST HOLE AT 15.39 m IN SAND.						· · · · · · · · · · · · · · · · · · ·	2
16		NOTES: 1. No seepage observed during drilling. 2. Test hole open to 13.7 m below ground surface upon completion.							2
17		3. Test hole backfilled with auger cuttings after drilling.						· · · · · · · · · · · · · · · · · · ·	2
18									
19								· · · · · · · · · · · · · · · · · · ·	
20									
21								· · · · · · · · · · · · · · · · · · ·	
22									
23								· · · · · · · · · · · · · · · · · · ·	
24								· · · · · · · · · · · · · · · · · · ·	
25									
26								· · · · · · · · · · · · · · · · · · ·	
27									
28								· · · · · · · · · · · · · · · · · · ·	
29									
30							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		AECOM				GED BY: Sam Oshati IEWED BY: Zeyad Shu		MPLETION DEPTH: 15.39 m MPLETION DATE: 6/25/13	1
						JECT ENGINEER: Ric		Page	0

Appendix E Laboratory Test Results

MOISTURE CONTENT

JOB No.: 60117627 CLIENT: City of SSM PROJECT: SSM Landfill Expansion DATE: July 16, 2013

HOLE NO.	TH13 - 01	-	-	-	-	-
SAMPLE NO.	G3 12 - 13	G6 21.5 - 22.5	<u> </u>	S11 40 - 41.5	S13 50 - 51.5	S14
DEPTH (FT)	12 - 13	21.5 - 22.5	31.5	40 - 41.5	50 - 51.5	55 - 56.5
MOISTURE CONTENT %	41.8	18.9	4.8	2.9	5.6	19.0
HOLE NO.	TH13 - 01		TH13 - 02			TH13 - 03
SAMPLE NO.	S15	S16	S20	S21	S22	S24
DEPTH (FT)	60 - 61.5	65 - 66.5	20.0	25.0	30.0	5.0
MOISTURE CONTENT %	10.1	12.7	4,5	10.9	7.3	4.8
	10.1	12.1		10.0	7.5	7.0
HOLE NO.	TH13 - 03	_	_	_	_	_
SAMPLE NO.	S26	 S28	 S29		 S32	S33
DEPTH (FT)	15.0	25.0	30.0	40.0	45.0	50.0
MOISTURE CONTENT %	5.6	3.8	6.2	3.1	5.3	8.7
MOISTORE CONTENT %	5.0	3.0	0.2	J. I	0.0	0.1
HOLE NO.	TH13 - 03		-	TH13 - 05	-	
SAMPLE NO.	S34	- S35	 S36	S44	 S45	- S46
DEPTH (FT)	55.0	60.0	65.0	15.0	20.0	25.0
		00.0	00.0	10.0	20.0	
MOISTURE CONTENT %	17.5	14.2	15.0	7.3	8.6	11.6

AECOM 99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

MATERIALS LABORATORY

MOISTURE CONTENT

JOB No.: 60117627 CLIENT: City of SSM PROJECT: SSM Landfill Expansion DATE: July 16, 2013

HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %	TH13 - 05 S47 30.0 16.1	- S48 35.0	- S49 45.0	- S50 55.0	- S51 65.0	TH13 - 06 S54
DEPTH (FT) MOISTURE CONTENT %	30.0	35.0				
MOISTURE CONTENT %			45.0	55.0	65.0	
	16.1				05.0	5.5
		19.9	17.4	17.8	17.6	4.9
HOLE NO.	TH13 - 06		TH13 - 07	-	-	-
SAMPLE NO.	S55	G56	S57	S58	S59	S60
DEPTH (FT)	15.0	16.0	5.0	10.0	15.0	20.0
MOISTURE CONTENT %	3.8	4.4	4.5	5.3	3.2	3.0
	7140.07					
HOLE NO.	TH13 - 07	- S62	- S63	-	- S65	- S66
SAMPLE NO. DEPTH (FT)	S61 25.0	30.0	35.0	S64 40.0	50.0	60.0
	23.0	30.0	55.0	4υ.υ	JU.U	- 00.0
MOISTURE CONTENT %	4.2	4.6	5.9	11.5	5.7	17.7
HOLE NO.	TH13 - 07	-	TH13 - 08		-	-
SAMPLE NO.	S67	G68	S69	S71	S72	S74
DEPTH (FT)	70.0	80.0	5.0	15.0	20.0	30.0
MOISTURE CONTENT %	18.7	18.8	5.3	12.6	2.5	2.6

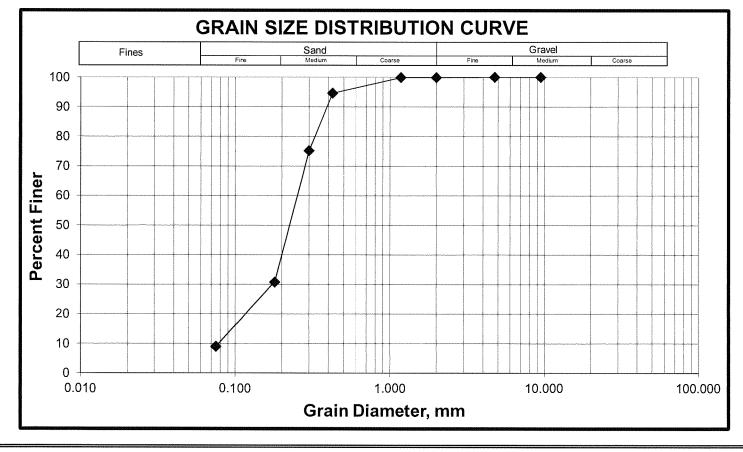
AECOM 99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

MATERIALS LABORATORY

MOISTURE CONTENT

JOB No.: 60117627 CLIENT: City of SSM PROJECT: SSM Landfill Expansion DATE: July 16, 2013

HOLE NO.	TH13 - 08	-		-	-	-
SAMPLE NO.	S75	S76	S77	S78	S79	S80
DEPTH (FT)	35.0	40.0	50.0	60.0	70.0	85.0
MOISTURE CONTENT %	3.5	7.4	6.2	5.3	2.4	6.4
HOLE NO.	TH13 - 08	TH13 - 09	-		_	_
SAMPLE NO.		S82	S84	S85	S86	S87
DEPTH (FT)	100.0	5.0	15.0	20.0	25.0	30.0
MOISTURE CONTENT %	20.1	6.3	6.7	4.5	4.8	4.6
	TU12 00	TH13 - 10B	TH13 - 11B			
HOLE NO. SAMPLE NO.	TH13 - 09 S88	S94	S99	- S100	- S101	- S102
DEPTH (FT)	35.0	5.0	55.0	60.0	70.0	80.0
MOISTURE CONTENT %	4	6.7	5.1	9.9	21.7	20.8
HOLE NO.						
SAMPLE NO. DEPTH (FT)						
MOISTURE CONTENT %						
NOTES:					I	
AEC	MO	MATERIALS LA AECOM 99 Commerce Dr	ABORATORY	R3P 0Y7 Cana	da	

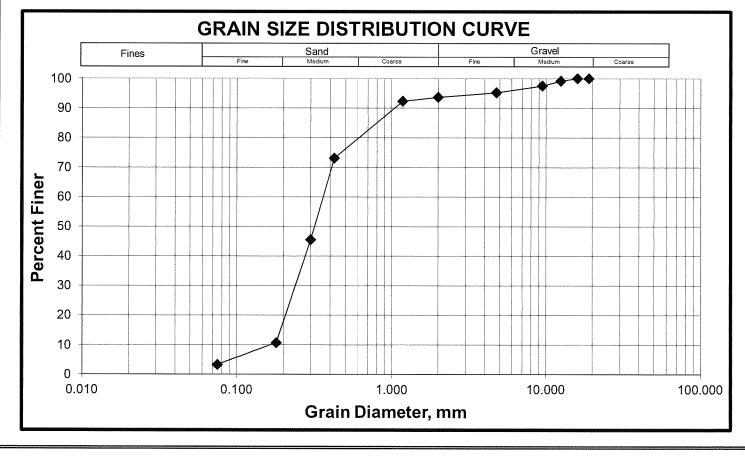

tel (204) 477-5381 fax (204) 284-2040

MATERIALS LABORATORY

AECOM AECOM

Client:	City of SSM	Sample No.:	S13
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 01
Job No:	60117627	Depth:	50 - 51.5'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		*****
37.5	1.5"		
25.0	1"		***************************************
19.0	3/4"		
16.0	5/8"		
12.5	1/2"		** - ²
9.5	3/8"		
4.75	No. 4	100.0	
2.00	No. 10	100.0	
1.18	No. 16	99.9	
0.425	No. 40	94.6	
0.300	No. 50	75.1	***************************************
0.180	No. 80	30.8	
0.075	No. 200	9.0	

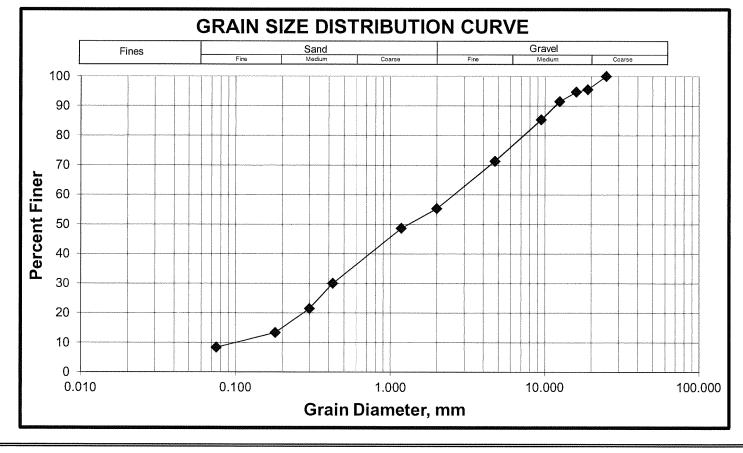


MATERIALS LABORATORY

AECOM AECOM

Client:	City of SSM	Sample No.:	S26
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 03
Job No:	60117627	Depth:	15'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"	100.0	
12.5	1/2"	99.2	
9.5	3/8"	97.5	
4.75	No. 4	95.3	
2.00	No. 10	93.7	
1.18	No. 16	92.3	
0.425	No. 40	73.1	
0.300	No. 50	45.5	***************************************
0.180	No. 80	10.7	
0.075	No. 200	3.3	

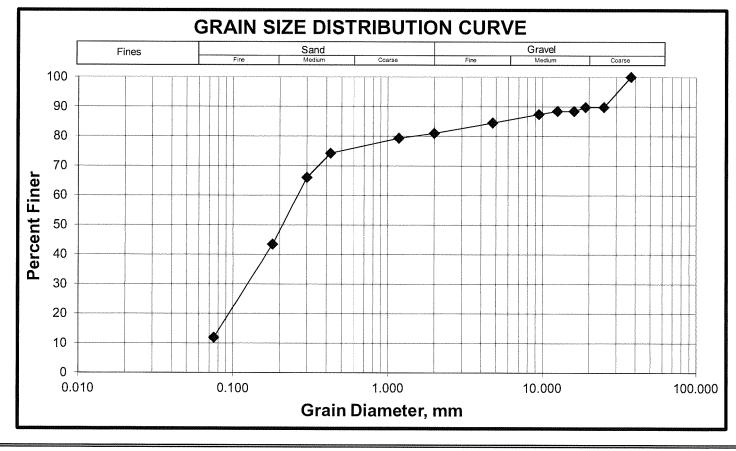


MATERIALS LABORATORY

AECOM 99 Comm

Client:	City of SSM	Sample No.:	S29
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 03
Job No:	60117627	 Depth:	30'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"	100.0	
19.0	3/4"	95.6	
16.0	5/8"	94.7	
12.5	1/2"	91.5	
9.5	3/8"	85.3	
4.75	No. 4	71.3	
2.00	No. 10	55.3	
1.18	No. 16	48.6	
0.425	No. 40	30.0	
0.300	No. 50	21.5	
0.180	No. 80	13.3	
0.075	No. 200	8.4	

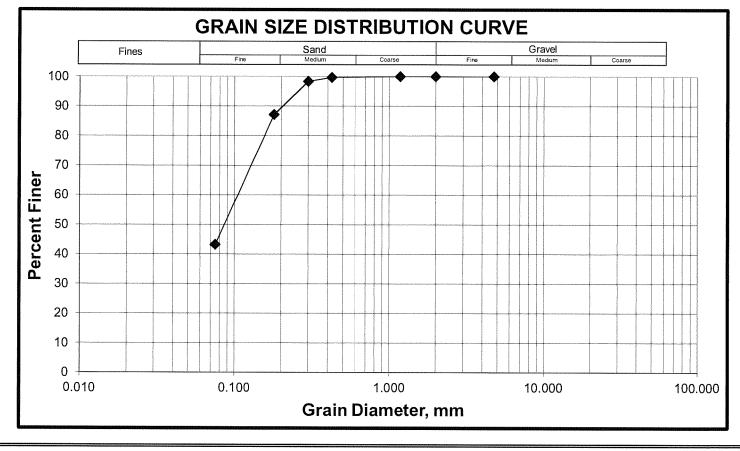


MATERIALS LABORATORY

AECOM AECOM

Client:	City of SSM	Sample No.:	S34
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 03
Job No:	60117627	Depth:	55'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"	-	
75.0	3"		
50.0	2"		
37.5	1.5"	100.0	
25.0	1"	89.9	· · · · · · · · · · · · · · · · · · ·
19.0	3/4"	89.9	
16.0	5/8"	88.5	
12.5	1/2"	88.5	
9.5	3/8"	87.4	
4.75	No. 4	84.5	
2.00	No. 10	81.0	
1.18	No. 16	79.4	
0.425	No. 40	74.2	
0.300	No. 50	66.0	
0.180	No. 80	43.4	
0.075	No. 200	11.9	

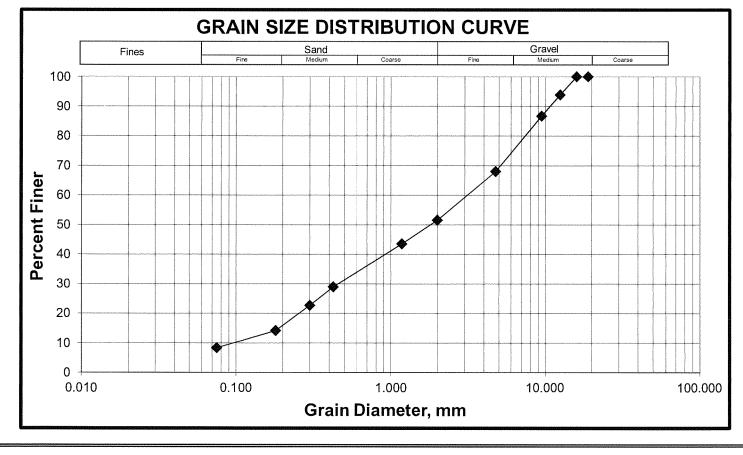


MATERIALS LABORATORY

AECOM AECOM

Client:	City of SSM	Sample No.	S50
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 05
Job No:	60117627	Depth:	55'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"	*****	
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		
12.5	1/2"	······································	
9.5	3/8"		
4.75	No. 4		
2.00	No. 10	100.0	
1.18	No. 16	100.0	
0.425	No. 40	99.7	
0.300	No. 50	98.4	
0.180	No. 80	87.2	
0.075	No. 200	43.2	

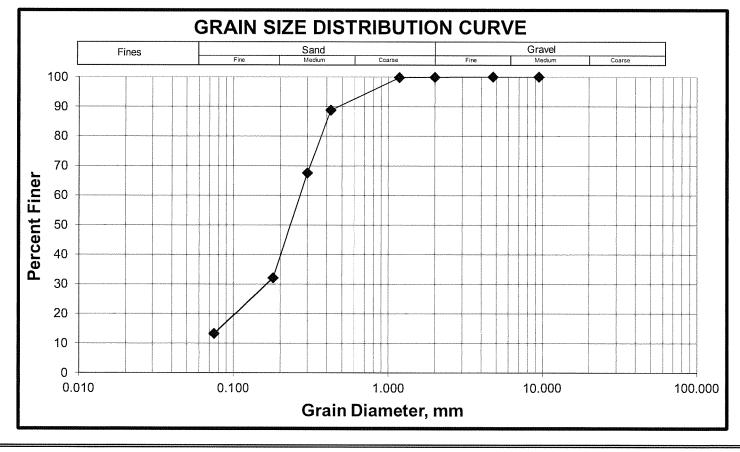


MATERIALS LABORATORY

AECOM AECOM

Client:	City of SSM	Sample No.:	S57
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 07
Job No:	60117627	Depth:	5'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		· · · · · · · · · · · · · · · · · · ·
100.0	4"		****
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"	·····	********
16.0	5/8"	100.0	
12.5	1/2"	93.9	
9.5	3/8"	86.7	
4.75	No. 4	67.9	
2.00	No. 10	51.5	
1.18	No. 16	43.5	······
0.425	No. 40	29.0	
0.300	No. 50	22.7	
0.180	No. 80	14.2	
0.075	No. 200	8.4	

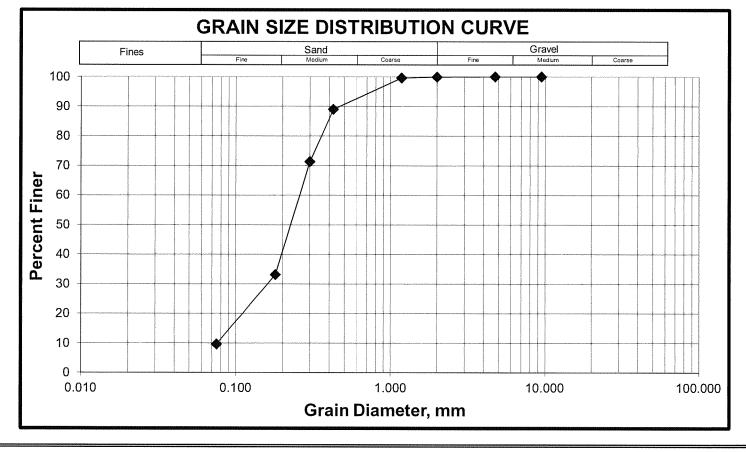


MATERIALS LABORATORY

AECOM 99 Comm

Client:	City of SSM	Sample No.:	S68	
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 07	
Job No:	60117627	Depth:	80'	
Date :	15-Jul-13	Sample Description:	Sand	

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		
12.5	1/2"		
9.5	3/8"		
4.75	No. 4	100.0	
2.00	No. 10	99.9	
1.18	No. 16	99.8	
0.425	No. 40	88.8	
0.300	No. 50	67.6	**************************************
0.180	No. 80	32.0	
0.075	No. 200	13.3	

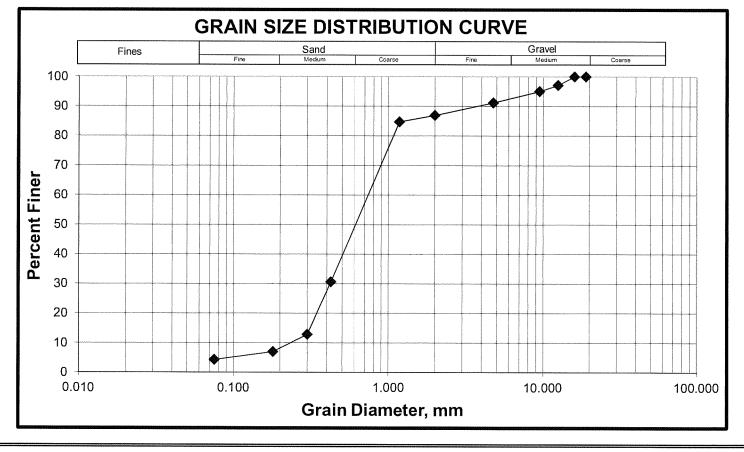


MATERIALS LABORATORY

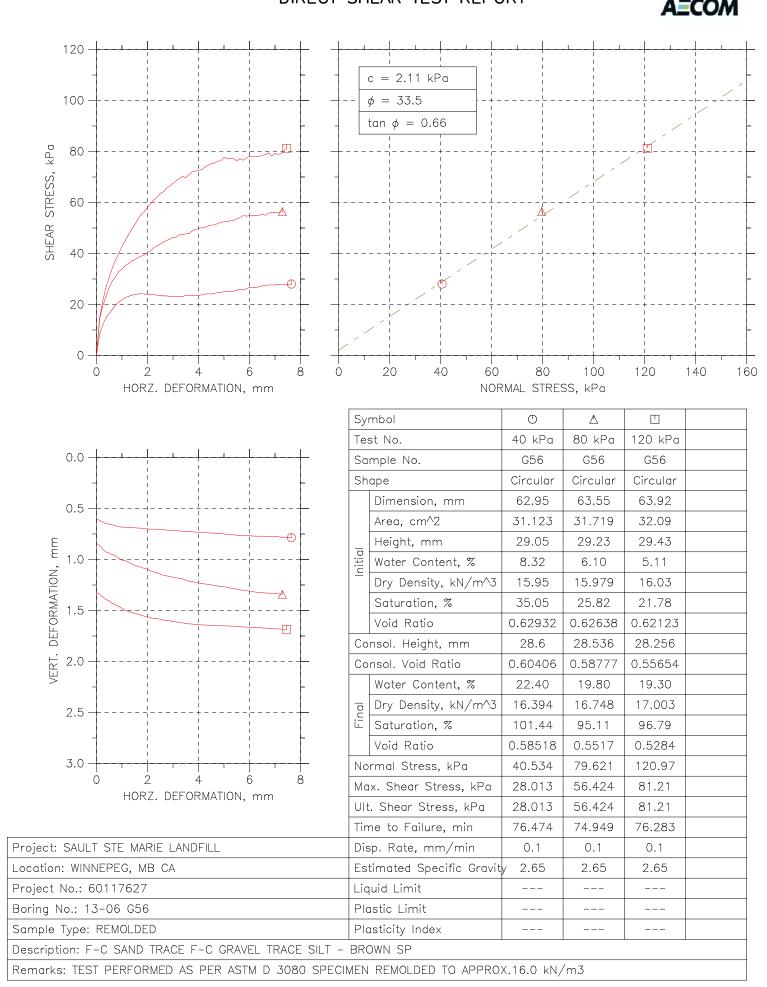
AECOM 99 Comm

Client:	City of SSM	Sample No.:	S71
Project:	SSM Landfill Expansion	Test Hole No.:	TH13 - 08
Job No:	60117627	Depth:	15'
Date :	15-Jul-13	Sample Description:	Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"		
12.5	1/2"		
9.5	3/8"		
4.75	No. 4	100.0	
2.00	No. 10	100.0	****
1.18	No. 16	99.6	
0.425	No. 40	89.0	
0.300	No. 50	71.3	
0.180	No. 80	33.1	
0.075	No. 200	9.7	


GRAIN SIZE DISTRIBUTION (ASTM C136-06)

MATERIALS LABORATORY


AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Client: City of SSM Sample No.: S82 SSM Landfill Expansion Project: Test Hole No.: TH13 - 09 Job No: 60117627 Depth: 5' 15-Jul-13 Date : Sample Description: Sand

Sieve (mm.)	Sieve No.	Total Percent Passing	Specification (min - max)
150.0	6"		
100.0	4"		
75.0	3"		
50.0	2"		
37.5	1.5"		
25.0	1"		
19.0	3/4"		
16.0	5/8"	100.0	
12.5	1/2"	97.1	
9.5	3/8"	95.0	
4.75	No. 4	91.1	
2.00	No. 10	86.9	
1.18	No. 16	84.8	
0.425	No. 40	30.6	****
0.300	No. 50	12.8	
0.180	No. 80	7.0	
0.075	No. 200	4.3	

DIRECT SHEAR TEST REPORT

Project: SAULT STE MARIE LANDFILLLocation: WINNEPEG, MB CABoring No.: 13-06 G56Tested By: BCMSample No.: G56Test Date: 8/1/13Test No.: 40 kPaSample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 16.0' Elevation: -----

Soil Description: F-C SAND TRACE F-C GRAVEL TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.0 kN/m3

	Elapsed Time min	Vertical Stress kPa	Vertical Displacement mm	Horizontal Stress kPa	Horizontal Displacement mm
1 2	0.00 3.40	40.53 40.38	0.599 0.6187	0 8.469	0 0.1255
3	4.68	40.3	0.635	11.96	0.251
4	6.08	40.38	0.6473	14.87	0.3753
5 6	7.07 8.36	40.38 40.38	0.6538	16.46 18.12	0.5008
6 7	8.36 9.62	40.38	0.6603 0.6701	18.12	0.6251 0.7507
8	10.90	40.53	0.6791	21.02	0.8762
9	12.01	40.53	0.6824	21.79	1
10	13.24	40.61	0.684	22.62	1.126
11 12	14.57 15.61	40.53 40.53	0.6857 0.6881	23.16 23.57	1.25 1.376
13	16.94	40.53	0.6898	23.37	1.5
14	18.16	40.61	0.6922	24.1	1.626
15	19.38	40.61	0.6938	24.22	1.751
16 17	20.38	40.53	0.6979	24.1	1.875
18	21.74 22.94	40.53 40.53	0.7012 0.7028	23.99 23.93	2.001 2.125
19	24.01	40.61	0.702	23.87	2.251
20	25.31	40.46	0.7036	23.63	2.375
21	26.66	40.53	0.7045	23.51	2.501
22 23	27.85 28.93	40.53 40.53	0.7077 0.7118	23.33 23.39	2.627 2.75
23	30.37	40.53	0.7143	22.98	2.75
25	31.42	40.53	0.7159	23.04	3
26	32.68	40.53	0.7184	23.16	3.126
27	33.98	40.53	0.72	23.16	3.251
28 29	35.18 36.38	40.46 40.61	0.7233 0.7249	23.04 23.63	3.376 3.501
30	37.55	40.61	0.7257	23.63	3.625
31	38.67	40.53	0.7282	23.45	3.751
32	39.98	40.46	0.7322	23.63	3.875
33 34	41.06 42.46	40.61 40.53	0.7331 0.7355	23.63 23.75	4.001 4.126
34	43.59	40.53	0.7372	24.05	4.120
36	44.77	40.53	0.7396	24.22	4.376
37	46.10	40.53	0.7404	24.05	4.5
38 39	47.35	40.61	0.7445	24.4 24.58	4.626 4.75
39 40	48.47 49.62	40.53 40.61	0.7453 0.747	24.58	4.876
41	50.95	40.61	0.7502	25.05	5.001
42	52.08	40.53	0.7535	24.99	5.125
43	53.30	40.53	0.7568	25.05	5.251
44 45	54.46 55.68	40.53 40.53	0.7576 0.7633	25.23 25.59	5.375 5.501
46	56.97	40.53	0.7641	25.94	5.625
47	58.19	40.46	0.7641	25.7	5.751
48	59.36	40.53	0.7674	26.12	5.876
49 50	60.59 61.68	40.61 40.61	0.7674 0.7707	26.65 26.59	6 6.126
51	63.01	40.53	0.7715	26.65	6.25
52	64.35	40.61	0.7723	26.95	6.376
53	65.59	40.53	0.7723	27.24	6.501
54 55	66.60 67.85	40.46 40.53	0.7731 0.7739	27.54	6.626 6.751
55 56	68.87	40.53	0.7756	27.6 27.72	6.875
57	70.05	40.53	0.7756	27.6	7.001
58	71.45	40.61	0.7772	27.89	7.125
59	72.68	40.61	0.7813	27.72	7.251
60 61	73.87 75.15	40.53 40.61	0.7821 0.7862	27.89 27.78	7.376 7.5
62	76.24	40.81	0.787	27.89	7.626
63	76.47	40.53	0.787	28.01	7.643

Project: SAULT STE MARIE LANDFILLLocation: WINNEPEG, MB CABoring No.: 13-06 G56Tested By: BCMSample No.: G56Test Date: 8/1/13Test No.: 80 kPaSample Type: REMOLDED

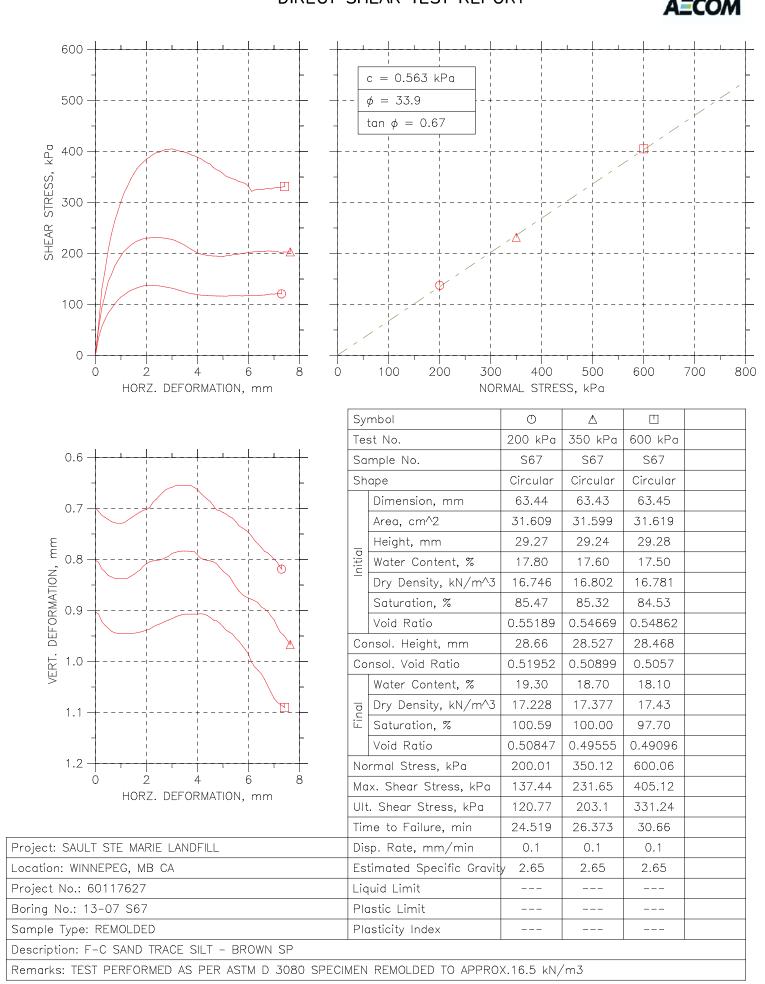
Project No.: 60117627 Checked By: WPQ Depth: 16.0' Elevation: -----

Soil Description: F-C SAND TRACE F-C GRAVEL TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.0 kN/m3

	Elapsed Time min	Vertical Stress kPa	Vertical Displacement mm	Horizontal Stress kPa	Horizontal Displacement mm
1 2	0.00	79.54 79.32	0.8402 0.8651	0 14.21	0 0.1255
3	6.59	79.54	0.9003	19.6	0.251
4	7.80	79.09	0.9283	23.16	0.3753
5	8.98	79.32	0.9377	26.59	0.5008
6 7	10.28	79.54 79.47	0.9532	29.28 30.88	0.6251
8	11.35 12.78	79.47	0.9646 0.9885	30.88	0.7507 0.8762
9	13.90	79.47	1.006	33.88	1
10	15.17	79.54	1.013	35.23	1.126
11	16.21	79.32	1.024	35.9	1.25
12	17.53	79.54	1.043	37.06	1.376
13 14	18.72 19.95	79.47 79.62	1.057 1.068	37.49 38.29	1.5 1.626
15	21.14	79.54	1.077	38.96	1.751
16	22.42	79.47	1.088	39.52	1.875
17	23.62	79.47	1.095	40.31	2.001
18	24.78	79.54	1.112	40.99	2.125
19 20	26.17	79.54	1.124	42.33	2.251
20 21	27.22 28.49	79.54 79.62	1.132 1.143	42.95 43.68	2.375 2.501
22	29.76	79.62	1.145	44.36	2.626
23	31.00	79.62	1.161	45.09	2.75
24	32.24	79.54	1.168	45.64	2.876
25	33.43	79.54	1.174	46.25	3
26 27	34.48 35.86	79.62 79.62	1.179 1.186	46.38 47.3	3.126 3.251
28	36.99	79.62	1.191	47.36	3.376
29	38.32	79.62	1.201	47.66	3.501
30	39.43	79.54	1.213	47.85	3.625
31	40.61	79.62	1.218	48.77	3.751
32	41.92	79.62	1.223	49.44	3.875
33 34	43.17 44.31	79.62 79.62	1.229 1.236	49.69 50.11	4.001 4.126
35	45.51	79.62	1.230	50.24	4.25
36	46.81	79.62	1.244	50.79	4.376
37	47.94	79.62	1.249	51.09	4.5
38	49.14	79.54	1.254	51.22	4.627
39 40	50.35 51.54	79.62 79.62	1.26 1.263	51.71 52.2	4.75 4.876
40	52.85	79.62	1.268	52.44	5.001
42	54.04	79.62	1.273	52.56	5.125
43	55.30	79.54	1.28	52.75	5.251
44	56.53	79.62	1.286	52.99	5.375
45 46	57.53 58.87	79.62 79.54	1.29 1.298	53.61 54.04	5.501 5.625
40	60.24	79.62	1.302	54.83	5.751
48	61.43	79.62	1.307	54.65	5.876
49	62.49	79.62	1.31	54.83	6
50	63.75	79.62	1.315	54.77	6.126
51 52	64.73	79.7	1.32	54.89 54.95	6.25
52 53	65.99 67.30	79.62 79.62	1.322 1.326	54.95 55.44	6.376 6.501
54	68.52	79.62	1.329	54.95	6.626
55	69.72	79.62	1.33	55.81	6.752
56	71.02	79.62	1.332	56.06	6.875
57	72.17	79.62	1.334	56.06	7.001
58 59	73.39 74.62	79.54 79.62	1.337 1.341	55.93 56.36	7.125 7.251
59 60	74.62	79.62	1.341	56.42	7.29
			1.0.12	00.12	

Project: SAULT STE MARIE LANDFILLLocation: WINNEPEG, MB CABoring No.: 13-06 G56Tested By: BCMSample No.: G56Test Date: 8/1/13Test No.: 120 kPaSample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 16.0' Elevation: -----



Soil Description: F-C SAND TRACE F-C GRAVEL TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.0 kN/m3

	Elapsed Time min	Vertical Stress kPa	Vertical Displacement mm	Horizontal Stress kPa	Horizontal Displacement mm
1	0.00	120.9	1.324	0	0
2	4.71	120.9	1.34	14.86	0.1255
3	6.06	120.6	1.369	21.46	0.251
4	7.40	120.5	1.393	26.91	0.3753
5	8.57	120.9	1.408	30.69	0.5008
6	9.82	121	1.432	34.46	0.6251
7 8	11.01	120.8	1.446	37.46	0.7507
9	12.20 13.39	120.7 120.9	1.46 1.478	40.22 42.73	0.8762 1
10	14.70	120.9	1.497	45.07	1.126
11	15.94	120.7	1.51	47.23	1.25
12	17.17	120.8	1.52	49.45	1.376
13	18.40	121	1.527	51.24	1.5
14	19.60	121	1.536	53.46	1.626
15 16	20.90	120.9	1.546 1.556	55.32 56.34	1.751 1.875
10	22.00 23.16	121 120.9	1.562	57.96	2.001
18	24.40	120.9	1.572	59.57	2.125
19	25.65	120.8	1.578	60.95	2.251
20	26.81	120.9	1.581	61.97	2.375
21	28.04	120.9	1.585	63.47	2.501
22	29.34	120.9	1.594	64.13	2.626
23 24	30.44 31.75	121 121	1.597 1.603	65.69 66.41	2.75 2.876
24	33.09	121	1.608	67.49	2.070
26	34.30	120.9	1.612	68.56	3.126
27	35.38	121	1.616	69.28	3.251
28	36.69	120.9	1.621	70.18	3.376
29	37.72	120.9	1.629	69.76	3.501
30	39.08	120.9	1.631	70.84	3.625
31 32	40.33 41.53	121 121	1.633 1.636	71.98 72.28	3.751 3.875
33	41.33	121	1.639	72.28	4.001
34	43.85	121	1.642	72.82	4.126
35	45.16	121	1.643	73.84	4.25
36	46.28	121	1.644	74.62	4.376
37	47.53	120.7	1.646	75.16	4.5
38	48.74	121	1.648	75.46	4.626
39 40	49.98 51.19	121 121	1.65 1.65	76.18 76.36	4.75 4.876
40	52.50	121	1.65	77.61	5.001
42	53.68	121	1.652	77.25	5.125
43	54.79	121	1.652	77.25	5.251
44	56.00	121	1.653	77.13	5.375
45	57.41	121	1.657	76.3	5.501
46 47	58.39 59.53	121 121	1.659 1.661	77.19 76.54	5.625 5.751
48	60.95	121.1	1.664	77.37	5.876
49	62.19	121	1.665	78.09	6
50	63.48	121	1.666	77.91	6.126
51	64.70	121	1.667	77.91	6.25
52	65.75	121	1.667	78.09	6.376
53	66.99	121	1.671	78.51	6.501
54 55	68.19 69.56	121 121	1.673 1.675	78.81 79.41	6.627 6.751
56	70.76	121	1.678	78.21	6.875
57	72.10	120.9	1.679	79.17	7.001
58	73.11	120.9	1.682	78.87	7.125
59	74.33	121	1.684	79.23	7.251
60	75.40	121	1.684	80.49	7.376
61	76.28	121	1.685	81.21	7.454

DIRECT SHEAR TEST REPORT


```
Fri, 02-AUG-2013 15:33:02
```

Project: SAULT STE MARIE LANDFILLLocation: WINNEPEG, MB CABoring No.: 13-07 S67Tested By: BCMSample No.: S67Test Date: 8/1/13Test No.: 200 kPaSample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 70.0' Elevation: -----

Soil Description: F-C SAND TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.5 kN/m3

	Elapsed Time min	Vertical Stress kPa	Vertical Displacement mm	Horizontal Stress kPa	Horizontal Displacement mm
1 2 3	0.00 4.70 6.13	199.9 199.6 199.9	0.6987 0.7061 0.7135	0 35.21 56.46	0 0.1255 0.251
4	7.36	199.9	0.7175	70.65	0.3753
5	8.71	199.9	0.7216	83.51	0.5008
6 7	9.72 11.08	199.9 199.9	0.7257 0.7282	91.61 101	0.6251 0.7507
8	12.33	199.9	0.729	108.5	0.8762
9 10	13.60	200	0.729	114.7	1 120
11	14.67 15.99	199.9 200	0.7282 0.7233	118.8 123.7	1.126 1.25
12	17.19	200	0.7192	127.5	1.376
13 14	18.35 19.68	200.1 200.1	0.7151 0.711	130.1 132.4	1.5 1.627
14	21.06	200.1	0.7069	132.4	1.751
16	22.18	200.1	0.7036	136.4	1.875
17 18	23.54 24.52	200.1 200	0.702 0.6979	137.2 137.4	2.001 2.125
19	25.76	200	0.6881	137.4	2.251
20	26.89	200	0.6824	137	2.375
21 22	28.28 29.50	200 200.1	0.6759 0.6693	136.4 135.6	2.501 2.626
23	30.67	200.1	0.6636	134.2	2.020
24	31.91	200	0.6603	133	2.876
25 26	33.15 34.14	200 200	0.6587 0.6554	131.9 130.4	3 3.126
27	35.45	199.6	0.6554	128.2	3.251
28	36.73	199.9	0.6546	126.4	3.376
29 30	37.89 39.11	199.9 199.9	0.6546 0.6546	124.6 122.8	3.501 3.625
31	40.26	199.8	0.6554	121.1	3.751
32	41.46	199.9	0.6587	120.6	3.875
33 34	42.66 44.04	199.8 199.9	0.6628 0.6701	119.3 118.4	4.001 4.126
35	45.18	199.8	0.6759	117.8	4.25
36 37	46.30	199.9	0.6816	117.6	4.376
37	47.53 48.72	199.8 199.9	0.6865 0.6947	117.2 116.8	4.5 4.626
39	50.05	199.9	0.7028	116.7	4.75
40 41	51.20	199.8	0.7045	116.5	4.876 5.001
41 42	52.47 53.48	199.8 199.8	0.7077 0.711	116.5 116.2	5.001
43	54.87	199.8	0.7159	117	5.251
44 45	55.90 57.20	199.8 199.9	0.7192 0.7257	117 117.2	5.375 5.501
45	58.26	199.9	0.7339	117.1	5.625
47	59.54	199.8	0.738	116.7	5.751
48 49	60.78 62.04	199.8 199.8	0.7421 0.747	117.2 117.3	5.876 6
50	63.14	199.8	0.7543	117.5	6.126
51	64.47	199.7	0.7633	117.1	6.25
52 53	65.50 66.80	199.9 199.8	0.7698 0.7764	117.6 118.3	6.376 6.501
54	68.10	199.9	0.7837	118.4	6.626
55	69.30	199.8	0.787	119.6	6.751
56 57	70.42 71.57	199.8 199.8	0.7927 0.7993	120.5 120.3	6.875 7.001
58	72.89	199.9	0.805	120.3	7.125
59	74.19	199.8	0.8156	121.1	7.251
60	74.59	199.9	0.8189	120.8	7.299

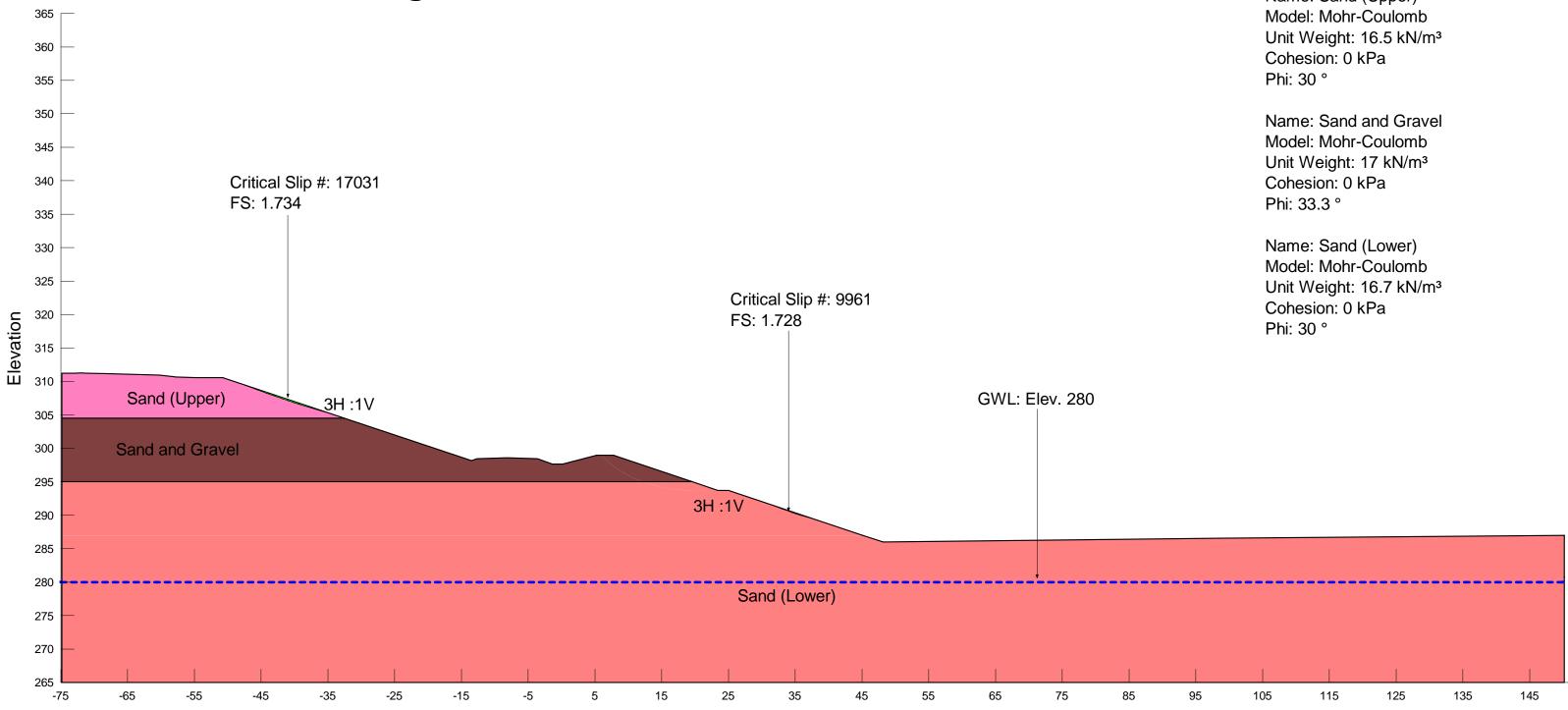
Project: SAULT STE MARIE LANDFILLLocation: WINNEPEG, MB CABoring No.: 13-07 S67Tested By: BCMSample No.: S67Test Date: 8/1/13Test No.: 350 kPaSample Type: REMOLDED

Project No.: 60117627 Checked By: WPQ Depth: 70.0' Elevation: -----

Soil Description: F-C SAND TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.5 kN/m3

	Elapsed	Vertical	Vertical	Horizontal	Horizontal
	Time	Stress	Displacement	Stress	Displacement
	min	kPa	mm	kPa	mm
1	0.00	349.9	0.802	0	0
2	5.17	349.7	0.8056	53.29	0.1255
3	6.60	349.7	0.8185	93.58	0.251
4	7.76	349.8	0.824	118.7	0.3753
5	9.31	349.9	0.8314	145.2	0.5008
6	10.29	349.9	0.8342	158.6	0.6251
7	11.68	349.9	0.8369	174.7	0.7507
8	12.92	350.1	0.8369	185.8	0.8762
9	14.09	350	0.8379	195.1	1
10 11 12	15.49 16.49	350 350	0.8379 0.8369	204.6 210.4	1.126 1.251
13 14	17.81 19.00 20.37	350.1 350.1 350.1	0.8333 0.8296 0.825	216 220.3 224.2	1.376 1.5 1.626
15	21.49	350	0.8204	226.5	1.751
16	22.70	350	0.813	228.8	1.875
17	23.86	350	0.8084	230	2.001
18	25.03	350	0.8047	230.5	2.125
19	26.37	350.1	0.8029	231.7	2.251
20	27.52	350.1	0.802	231.1	2.375
21	28.73	350.1	0.801	231.1	2.501
22	29.90	350	0.7992	230.5	2.626
23	31.09	350.1	0.7964	229.6	2.75
24 25 26	32.33 33.64 34.74	350 350 350	0.7937 0.7881 0.7863	228.5 227.5 225.3	2.876 3.126
27	36.04	350	0.7845	222.4	3.251
28	37.27	350	0.7835	219.5	3.376
29	38.40	349.9	0.7835	216.3	3.501
30	39.69	349.9	0.7835	212.1	3.625
31	40.82	349.9	0.7845	208.2	3.751
32	41.85	349.9	0.7845	204.9	3.875
33	43.30	349.9	0.7909	200.8	4.001
34	44.40	349.8	0.7973	199.1	4.126
35	45.68	349.9	0.8001	197.6	4.25
36	46.77	349.9	0.802	196.4	4.376
37	47.95	349.9	0.8029	195.6	4.5
38	49.19	349.8	0.8047	194.9	4.627
39	50.47	349.9	0.8084	194.9	4.75
40	51.75	349.8	0.8158	193.7	4.876
41	52.92	349.9	0.8231	194	5.001
42	54.08	349.8	0.8277	195.4	5.125
43	55.32	349.9	0.8333	195.8	5.251
44	56.55	349.8	0.8434	197.4	5.375
45	57.72	349.9	0.8535	197.6	5.501
46	58.90	349.9	0.8618	198.9	5.625
47	60.14	349.9	0.8682	200.1	5.751
48	61.35	349.8	0.8728	200.8	5.876
49	62.66	349.9	0.8756	202.1	6
50	63.82	349.8	0.8784	202.8	6.126
51	64.86	349.7	0.8811	203.2	6.25
52	66.14	349.9	0.8848	203.7	6.376
53	67.54	349.8	0.8931	204.2	6.501
54	68.69	349.9	0.8968	204	6.626
55	69.75	349.8	0.9014	204.9	6.751
56	71.10	349.8	0.9106	204.7	6.875
57	72.07	349.8	0.918	204.3	7.001
58	73.29	349.9	0.9309	204.2	7.125
59	74.62	349.9	0.9428	201.5	7.251
60	75.80	349.9	0.9483	203	7.376
61	76.94	349.9	0.9566	202.8	7.5
62	78.24	349.9	0.9658	203.2	7.626
63	78.33	349.9	0.9668	203.1	7.639

Project: SAULT STE MARIE LANDFILLLocation: WINNEPEG, MB CAProject No.: 60117627Boring No.: 13-07 S67Tested By: BCMChecked By: WPQSample No.: S67Test Date: 8/1/13Depth: 70.0'Test No.: 600 kPaSample Type: REMOLDEDElevation: -----


Soil Description: F-C SAND TRACE SILT - BROWN SP Remarks: TEST PERFORMED AS PER ASTM D 3080 SPECIMEN REMOLDED TO APPROX.16.5 kN/m3

	Elapsed Time min	Vertical Stress kPa	Vertical Displacement mm	Horizontal Stress kPa	Horizontal Displacement mm
1	0.00	599.9	0.9031	0	0
2	1.82	599.8	0.9071	61.11	0.1255
3	3.44	599.7	0.9218	129.9	0.251
4	4.51	599.9	0.9292	166.5	0.3753
5	5.92	599.8	0.9349	207.4	0.5008
6 7	7.21	599.9	0.9406	237.8	0.6251
8	8.47 9.62	599.9 599.9	0.9439 0.9447	263 282.5	0.7507 0.8762
9	10.88	599.9	0.9455	301.9	0.0702
10	12.20	600.1	0.9455	319.3	1.126
11	13.28	600	0.9455	331.3	1.25
12	14.68	600.1	0.9455	345.1	1.376
13	15.88	600.1	0.9447	355.8	1.5
14 15	17.13 18.22	600.1	0.9439 0.9423	365.7 372.9	1.626 1.751
15	19.59	600.1 600.1	0.9423	372.9	1.875
17	20.80	600.1	0.9400	384.8	2.001
18	21.97	600.1	0.9366	389.1	2.125
19	23.24	600.1	0.9325	393.6	2.251
20	24.54	600.1	0.9292	397.4	2.375
21	25.74	600.1	0.9268	398.6	2.501
22 23	26.91 28.30	600.1 600.1	0.9243 0.921	401.4 403.9	2.626 2.75
24	29.39	600.1	0.9186	403.9	2.876
25	30.66	600.1	0.9161	405.1	3
26	31.91	600.1	0.9129	403.1	3.126
27	33.13	600	0.9104	401.4	3.251
28	34.42	600.1	0.9088	399.8	3.376
29 30	35.59 36.60	600 599.9	0.9071 0.9071	398.8 396.7	3.501 3.625
31	38.05	600	0.9071	393.1	3.751
32	39.13	600	0.9071	391.7	3.875
33	40.53	599.9	0.9071	388.5	4.001
34	41.63	600	0.9063	385.9	4.126
35	42.81	599.9	0.9071	381.5	4.25
36 37	44.01 45.30	599.9 599.9	0.9096 0.9137	377.7 375.2	4.376 4.5
38	46.61	599.9	0.9137	368.2	4.626
39	47.78	599.9	0.9202	364.1	4.75
40	48.82	599.9	0.9251	361.5	4.876
41	50.06	599.8	0.9317	356.6	5.001
42	51.34	599.9	0.939	351.5	5.125
43 44	52.48 53.68	599.9 599.8	0.9423 0.9464	349 346.5	5.251 5.375
45	54.83	599.9	0.9404	344.2	5.501
46	56.10	599.8	0.9603	341	5.625
47	57.38	599.8	0.9684	339.5	5.751
48	58.64	599.9	0.9766	337.1	5.876
49	59.67	599.8	0.9856	331.9	6
50 51	60.94 62.25	599.7 599.9	1.002	321.6 324.6	6.126 6.25
52	63.42	599.8	1.017	325.2	6.376
53	64.51	599.7	1.024	325	6.501
54	65.91	599.9	1.035	326.2	6.626
55	66.96	599.8	1.047	327.6	6.751
56	68.21	599.7	1.06	326.4	6.875
57 58	69.53 70.62	599.9 599.8	1.072	328.4 329.4	7.001 7.125
58 59	70.62	599.8	1.084	329.4 329.4	7.125
60	73.12	599.8	1.089	330.8	7.377
61	73.46	599.8	1.09	331.2	7.414

Appendix F Slope Stability Analysis

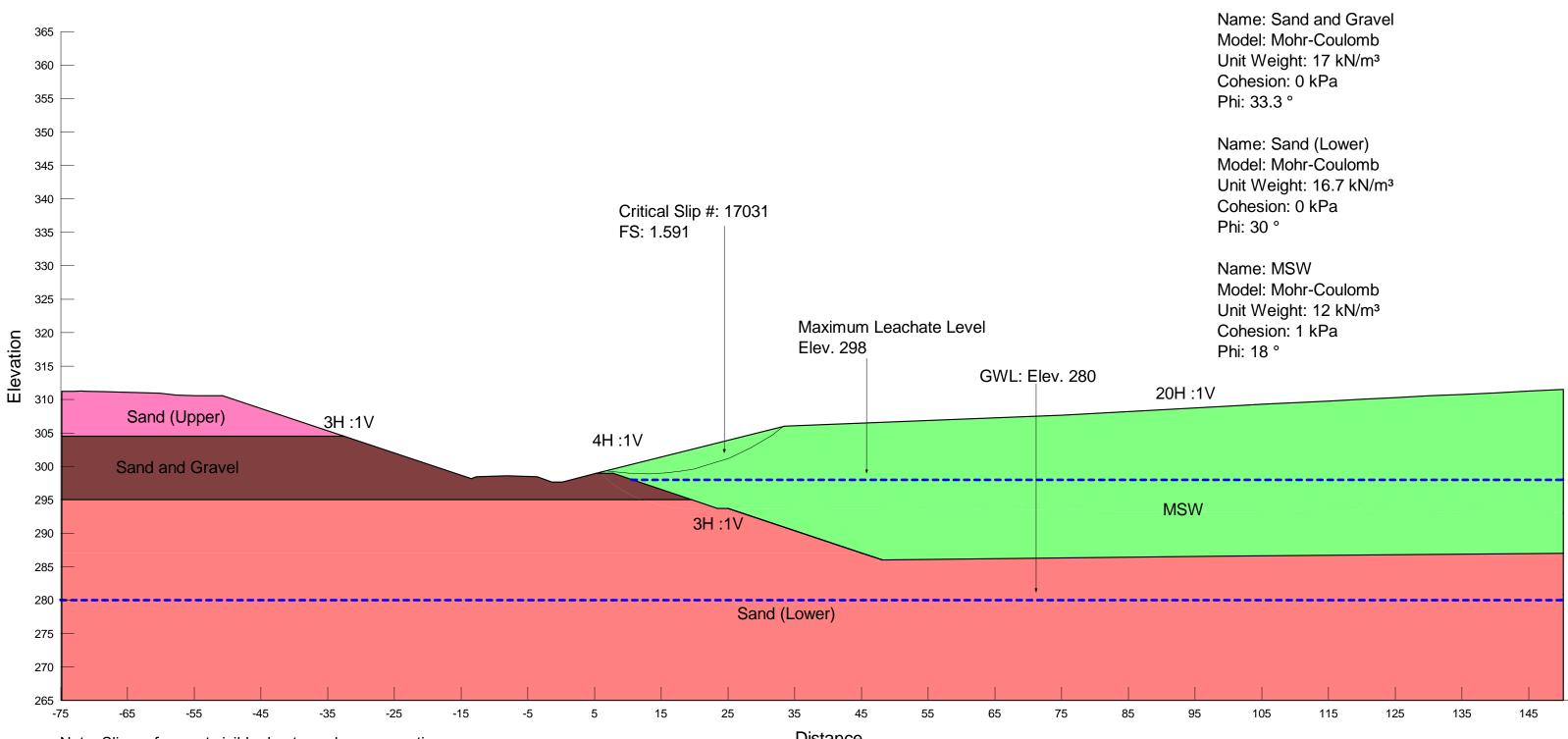
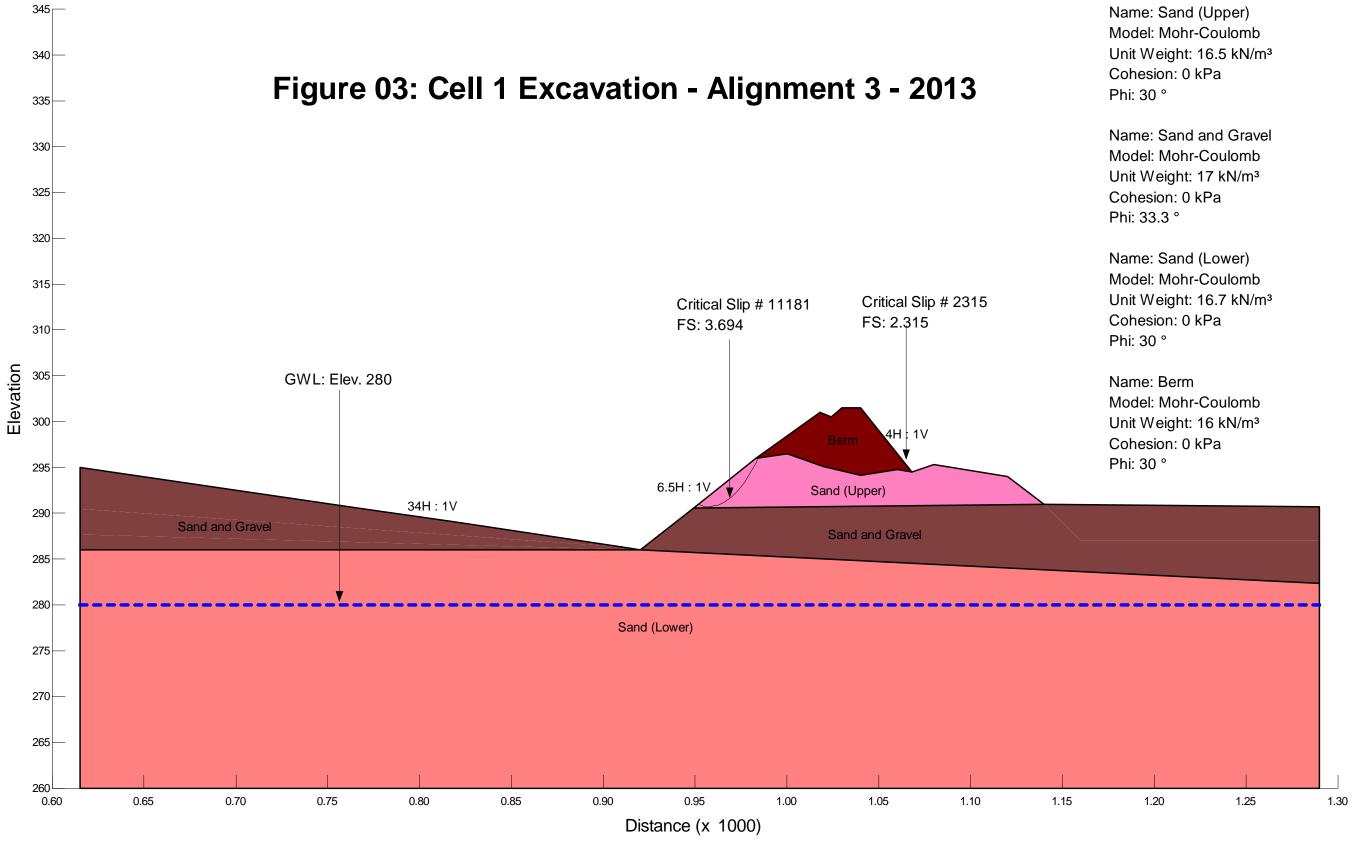

Distance

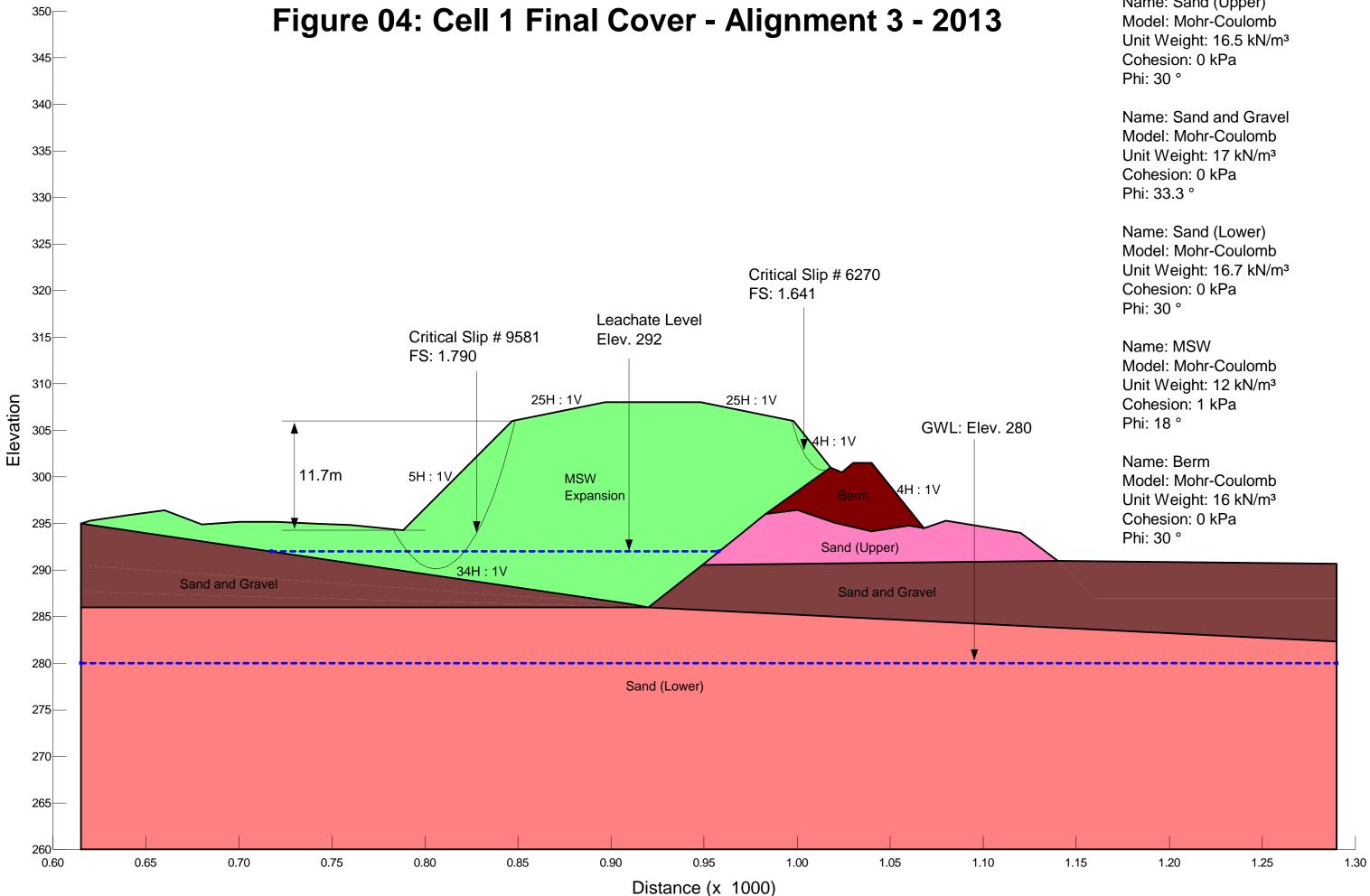
Figure 01: Cell 1 Excavation - Section 1+400 - 2014

Note: Slip surface not visible due to scale exaggeration

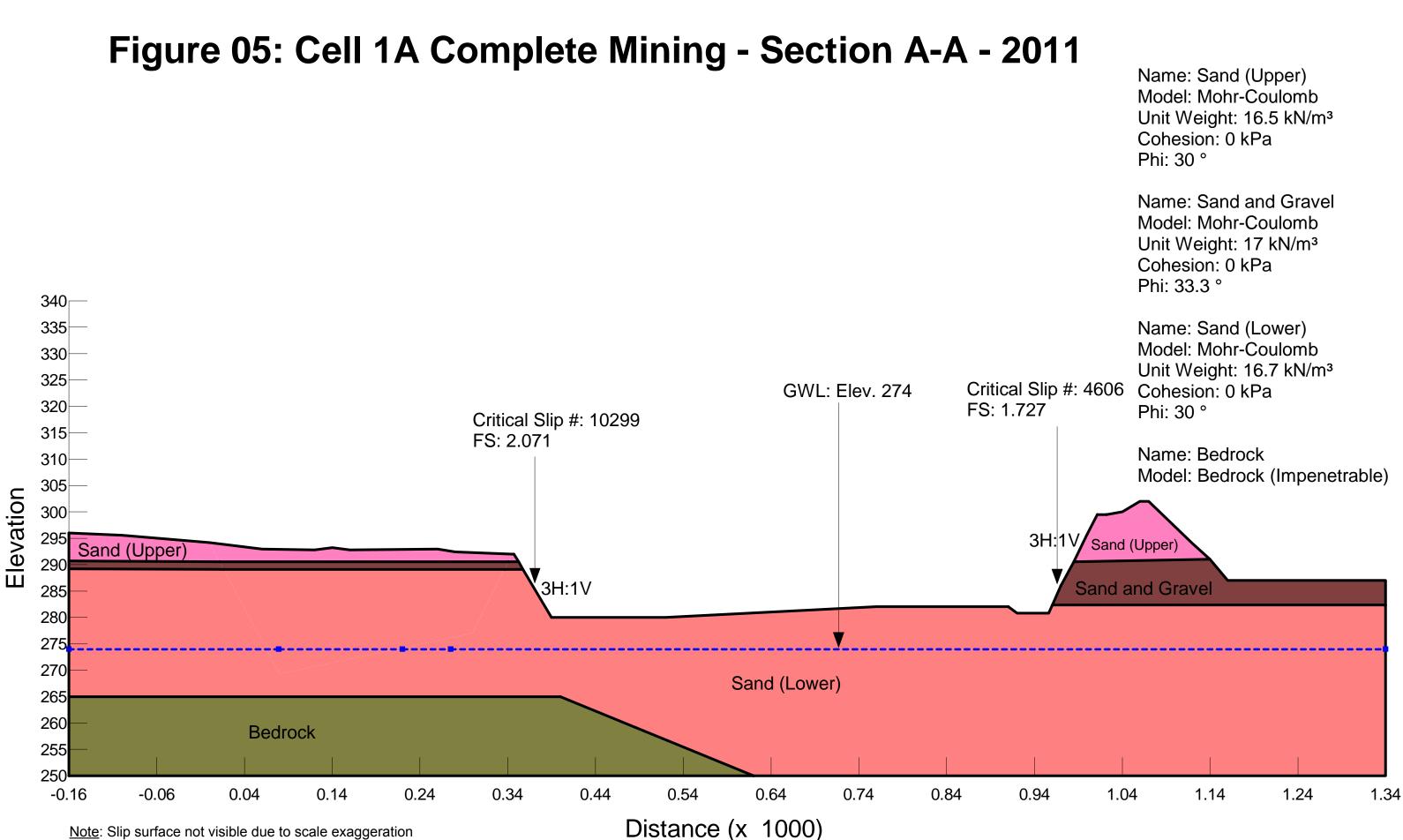
Name: Sand (Upper)


Figure 02: Cell 1 Final Cover - Section 1+400 - 2014

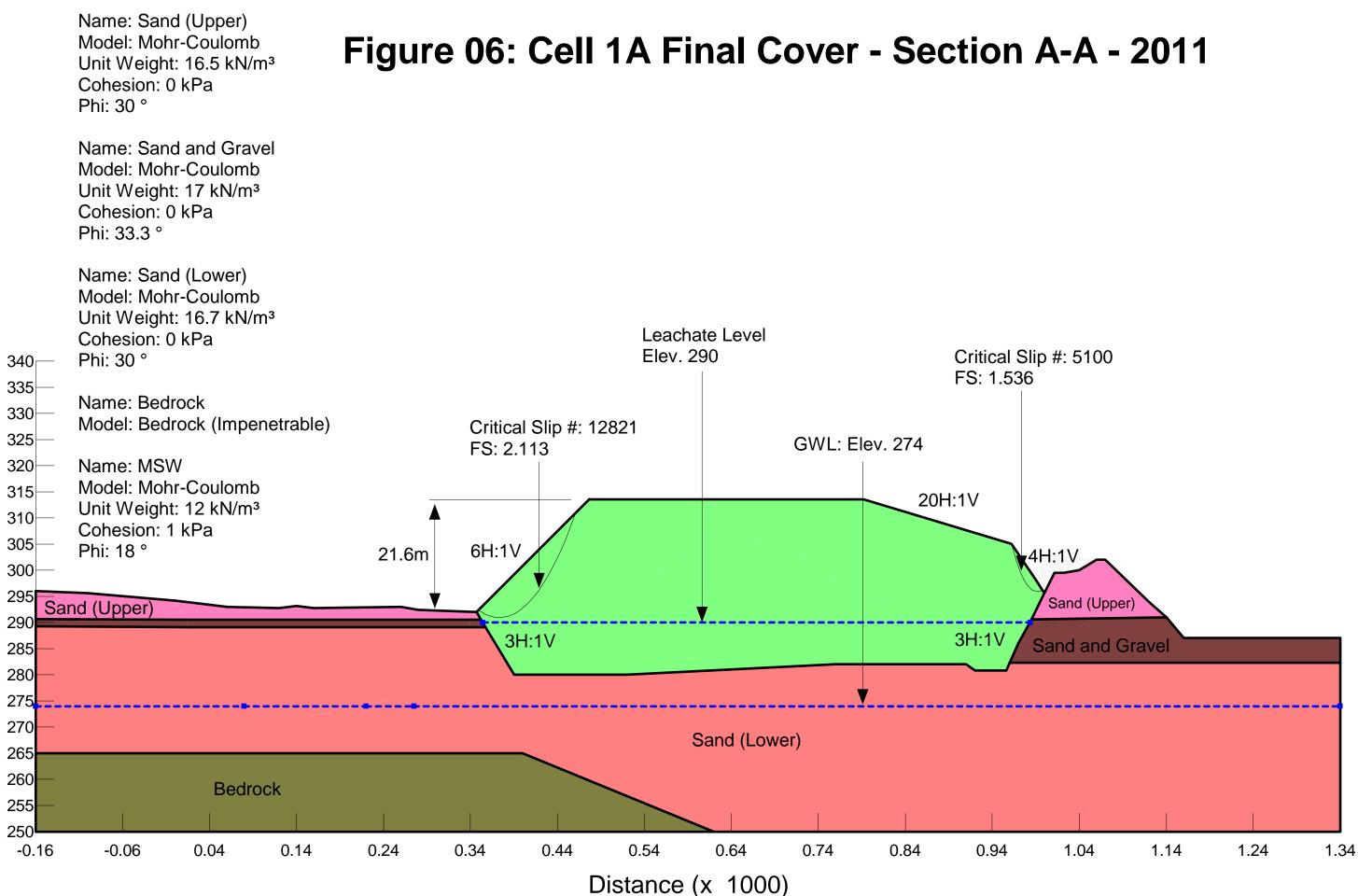
Note: Slip surface not visible due to scale exaggeration

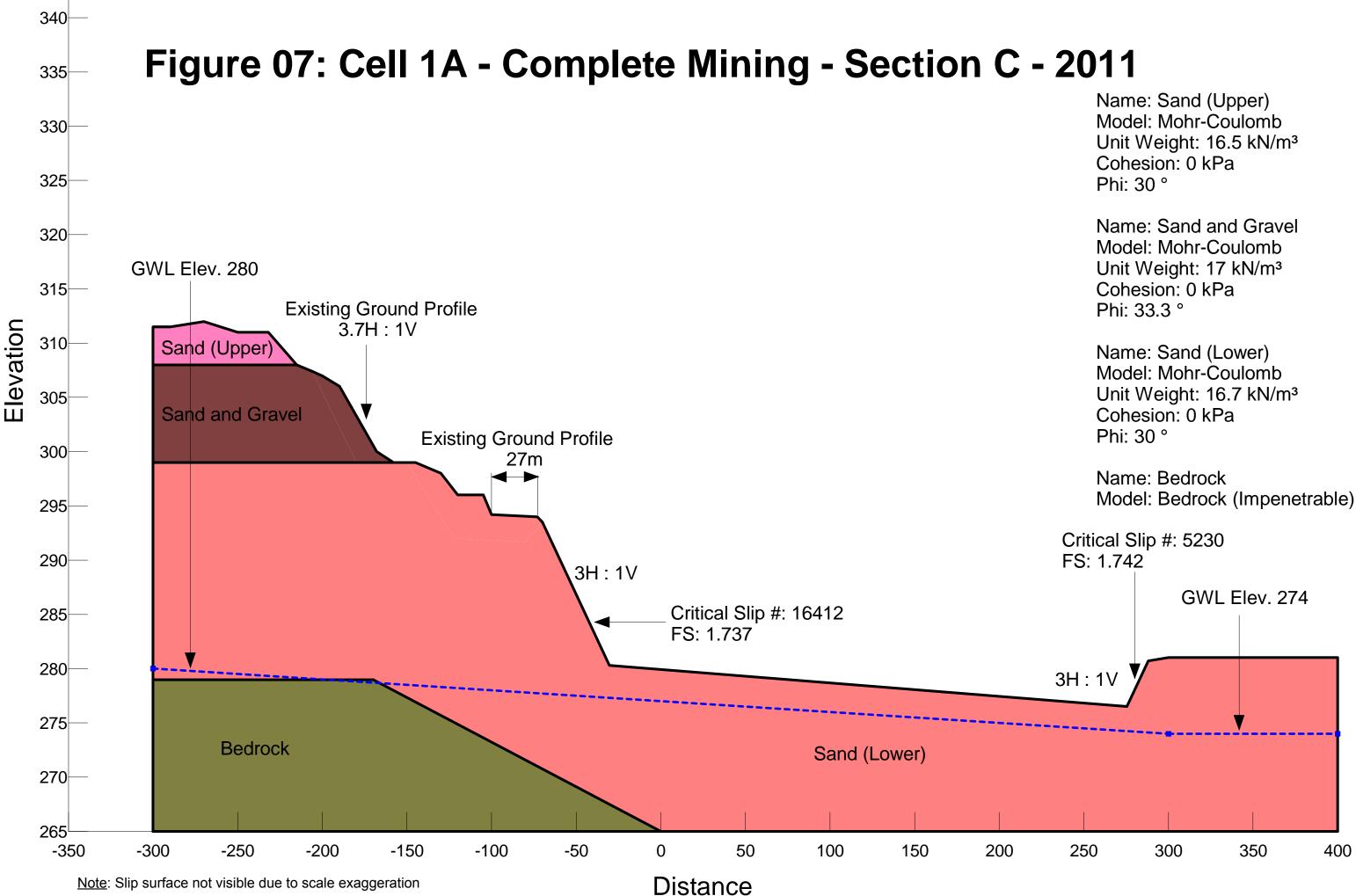

Distance

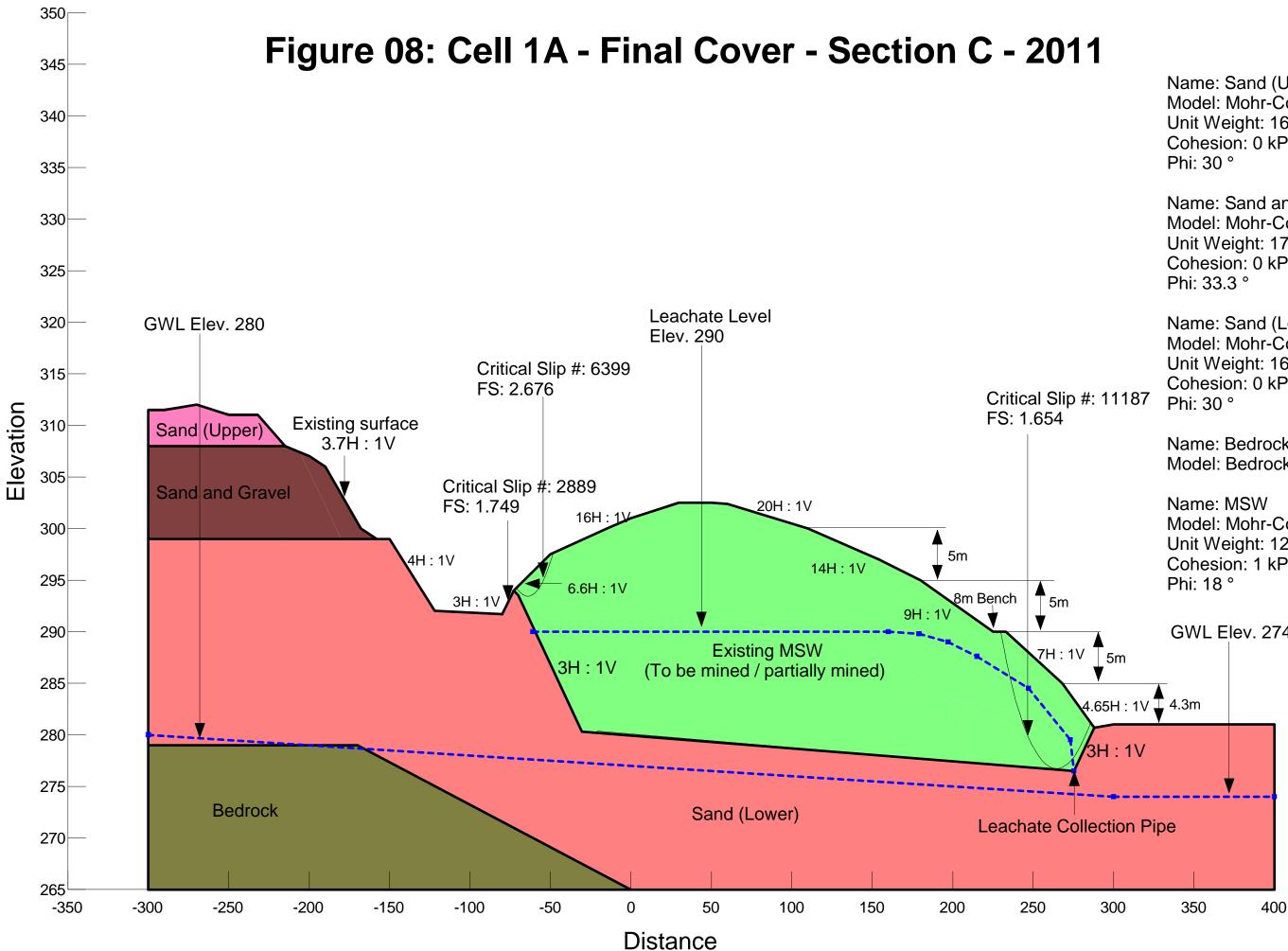
Model: Mohr-Coulomb Unit Weight: 16.5 kN/m ³
Unit Weight: 16.5 kN/m ³
Cohesion: 0 kPa
Phi: 30 °

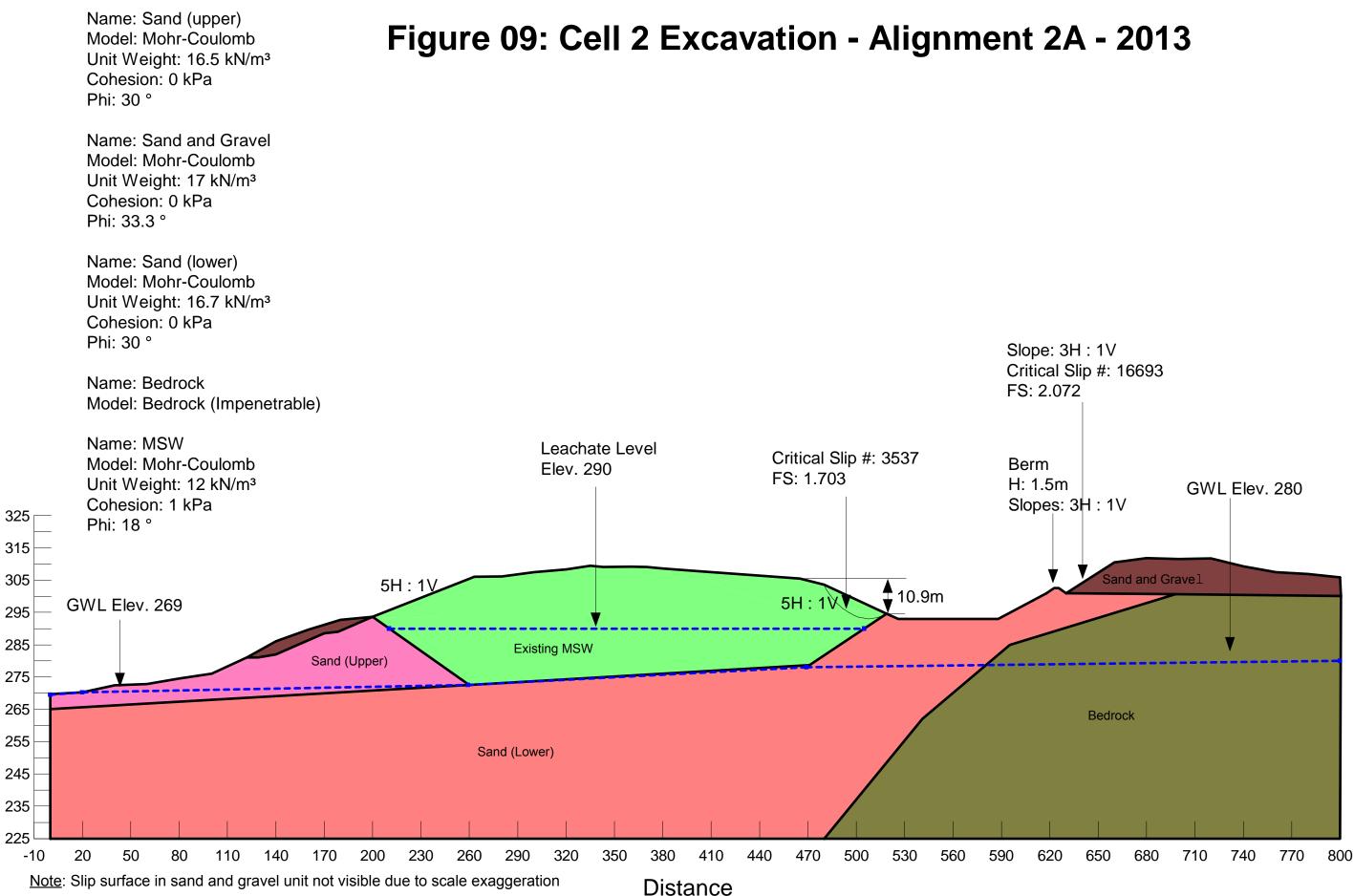


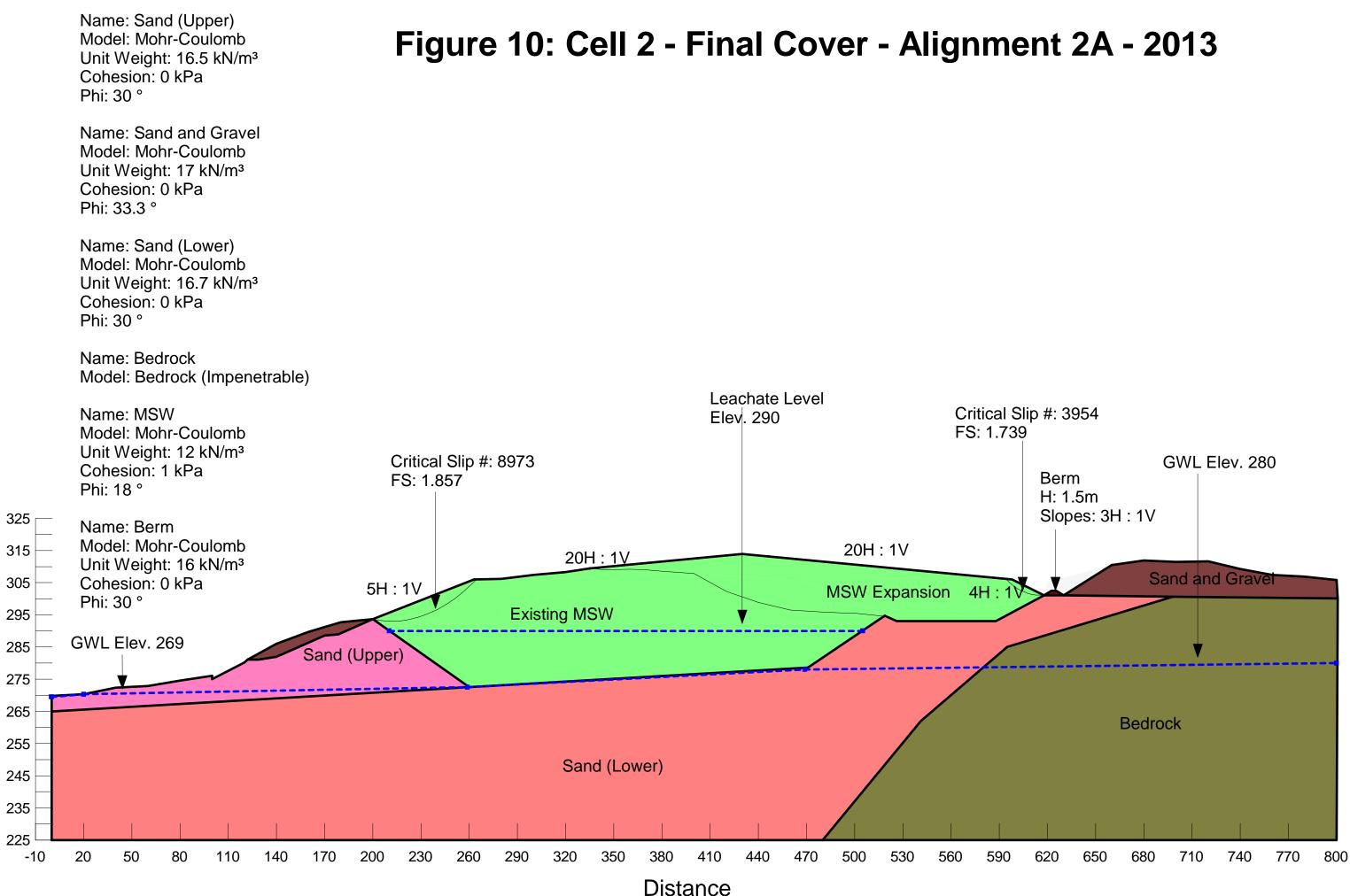
Note: Berm slip surface not visible due to scale exaggeration


Name: Sand (Upper)

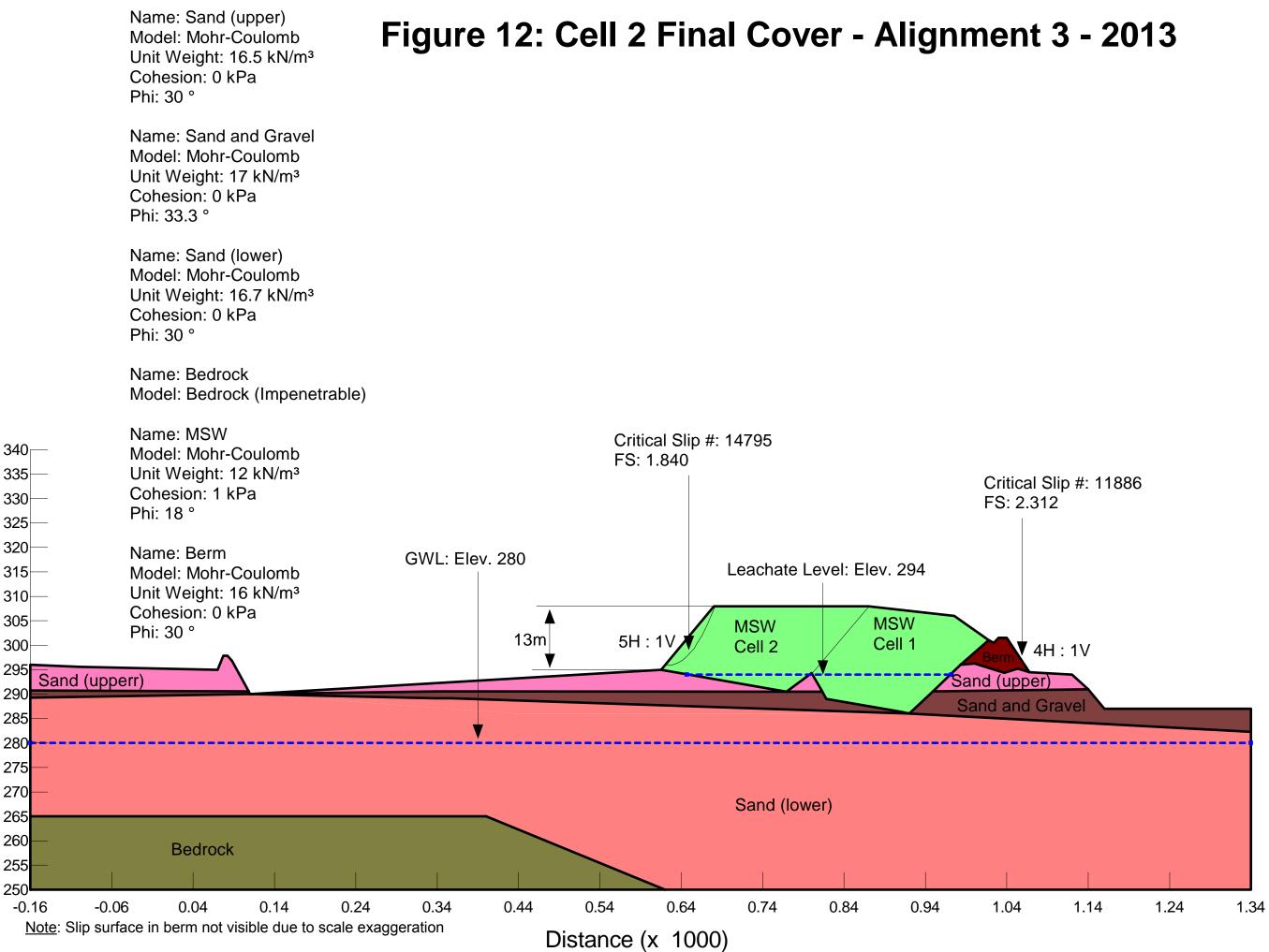


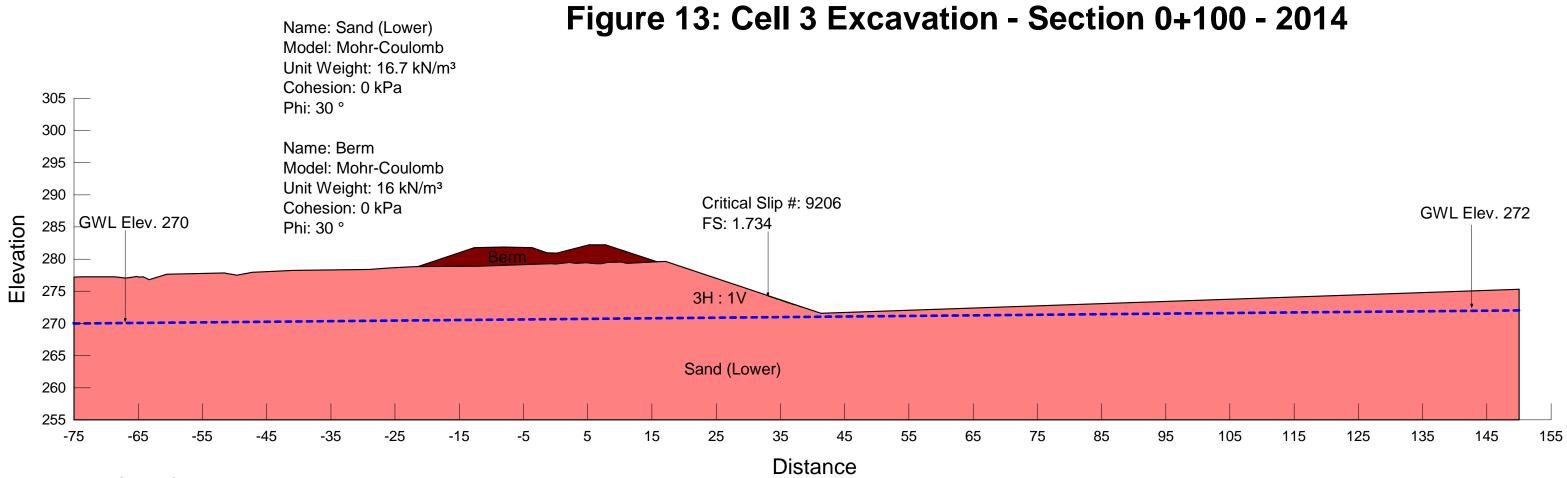

Name: Sand (Upper)

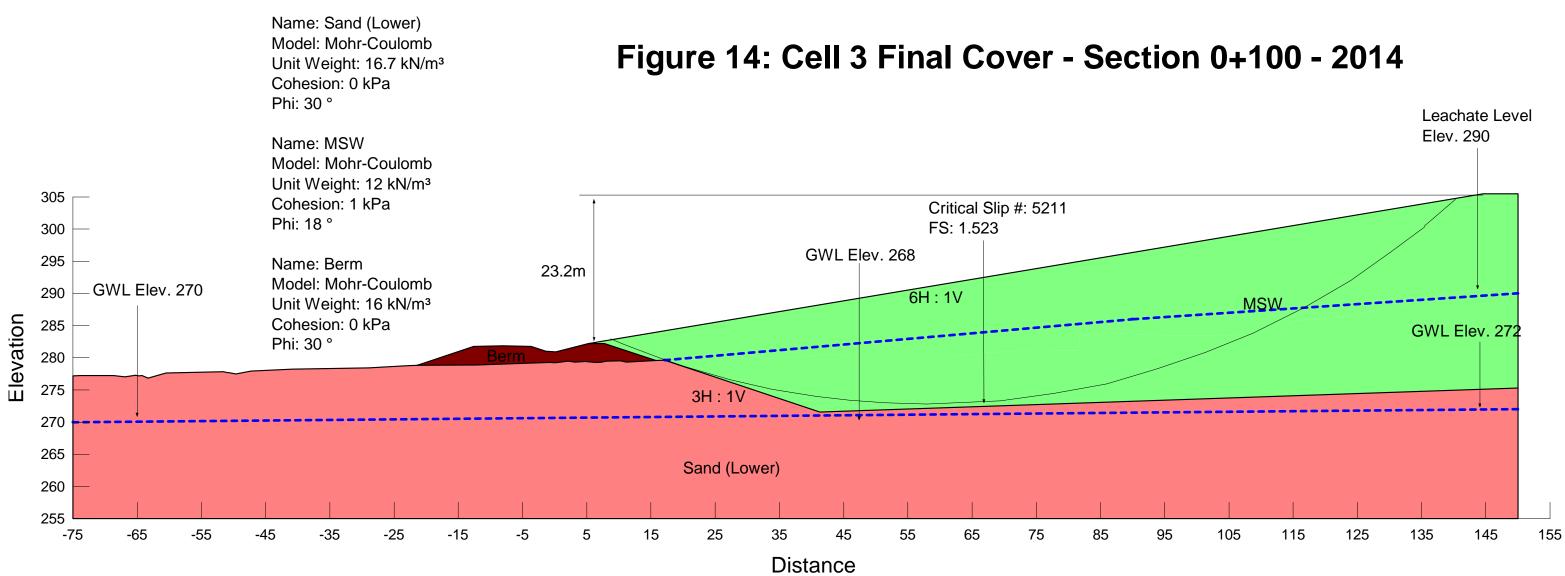

Note: Slip surface not visible due to scale exaggeration

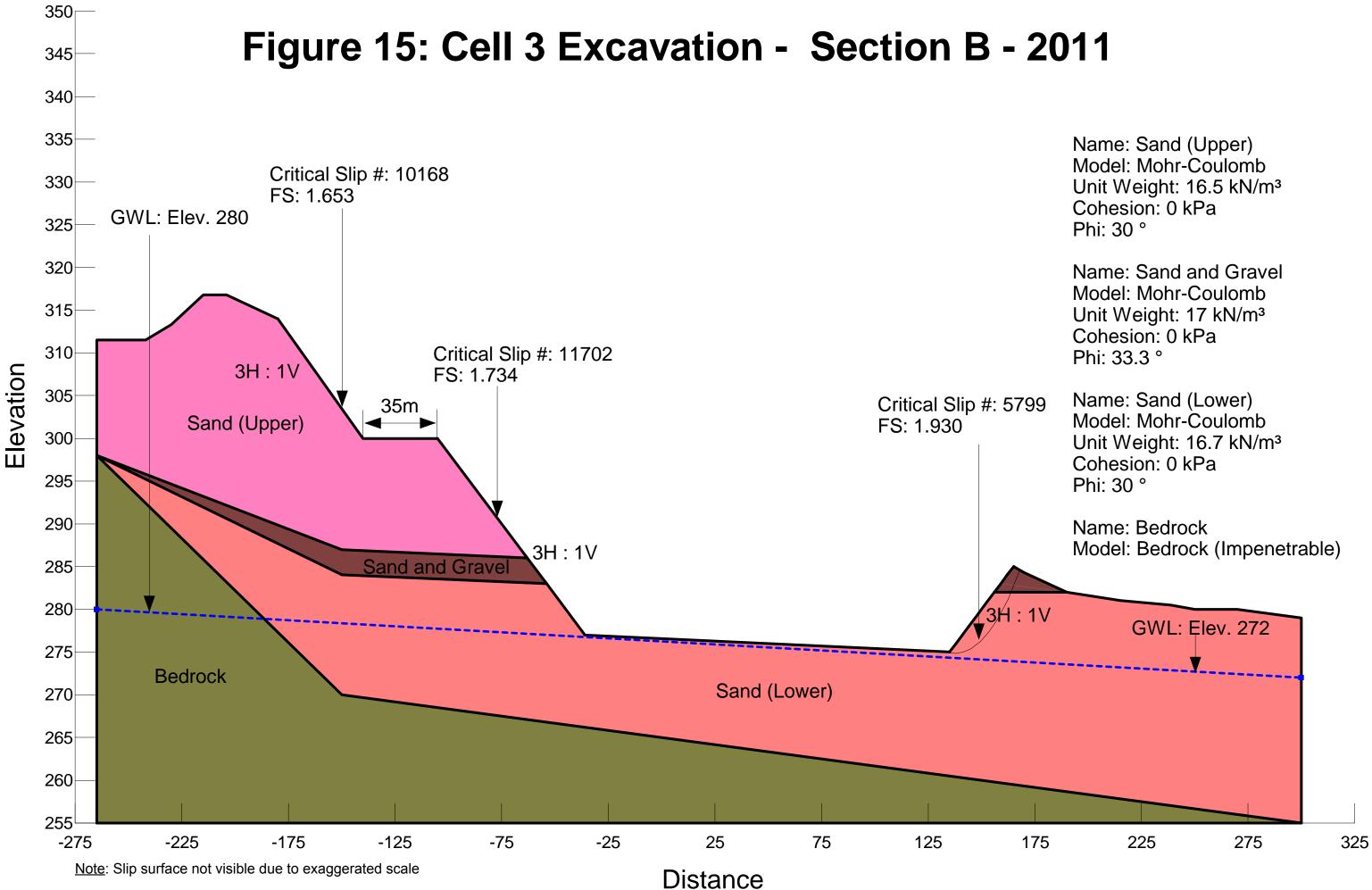


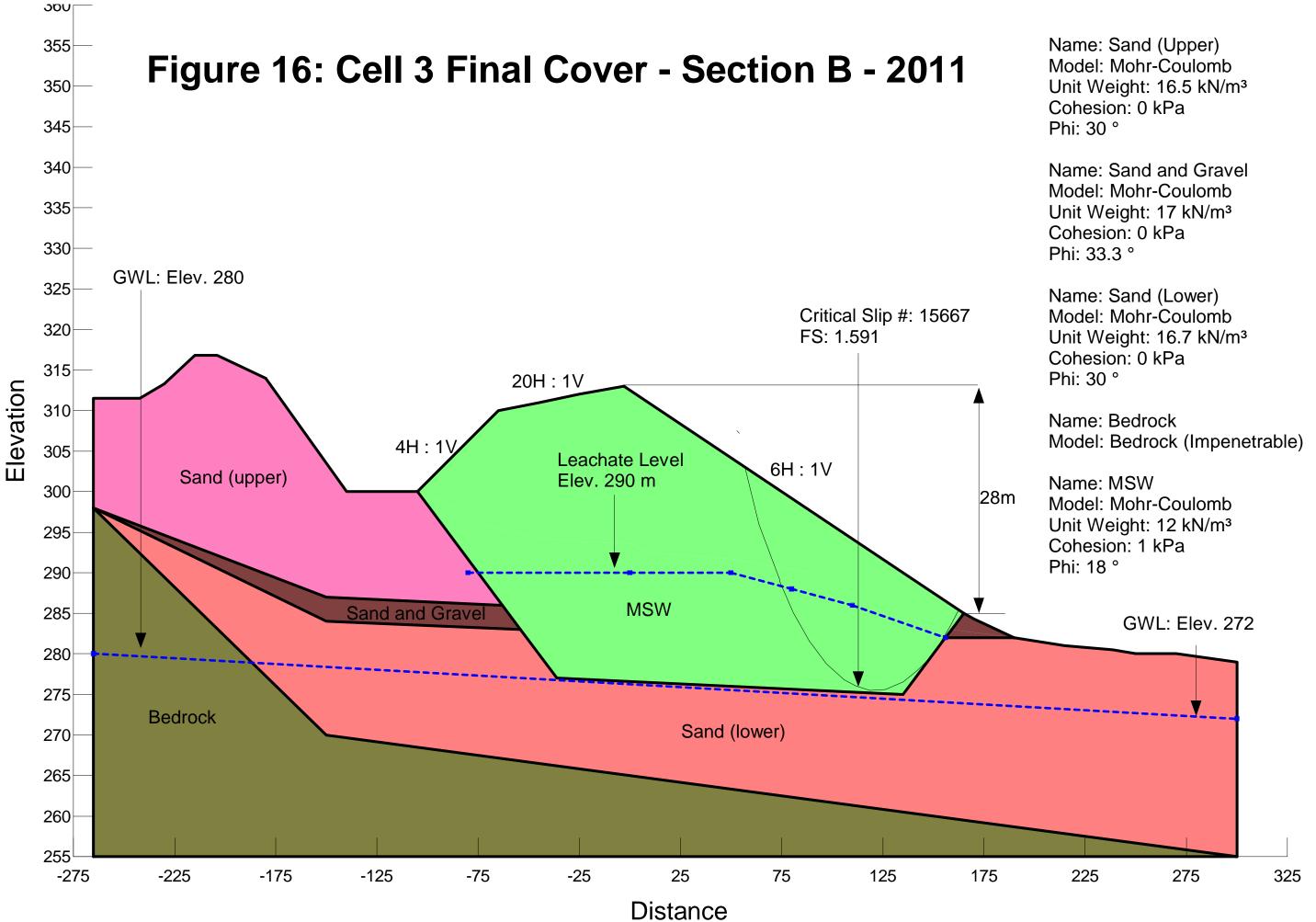



	Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m ³ Cohesion: 0 kPa Phi: 30 °
	Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m ³ Cohesion: 0 kPa Phi: 33.3 °
87	Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m ³ Cohesion: 0 kPa Phi: 30 °
	Name: Bedrock Model: Bedrock (Impenetrable)
	Name: MSW Model: Mohr-Coulomb Unit Weight: 12 kN/m ³ Cohesion: 1 kPa Phi: 18 °
	GWL Elev. 274




Figure 11 - Cell 2 Excavation - Alignment 3 - 2013





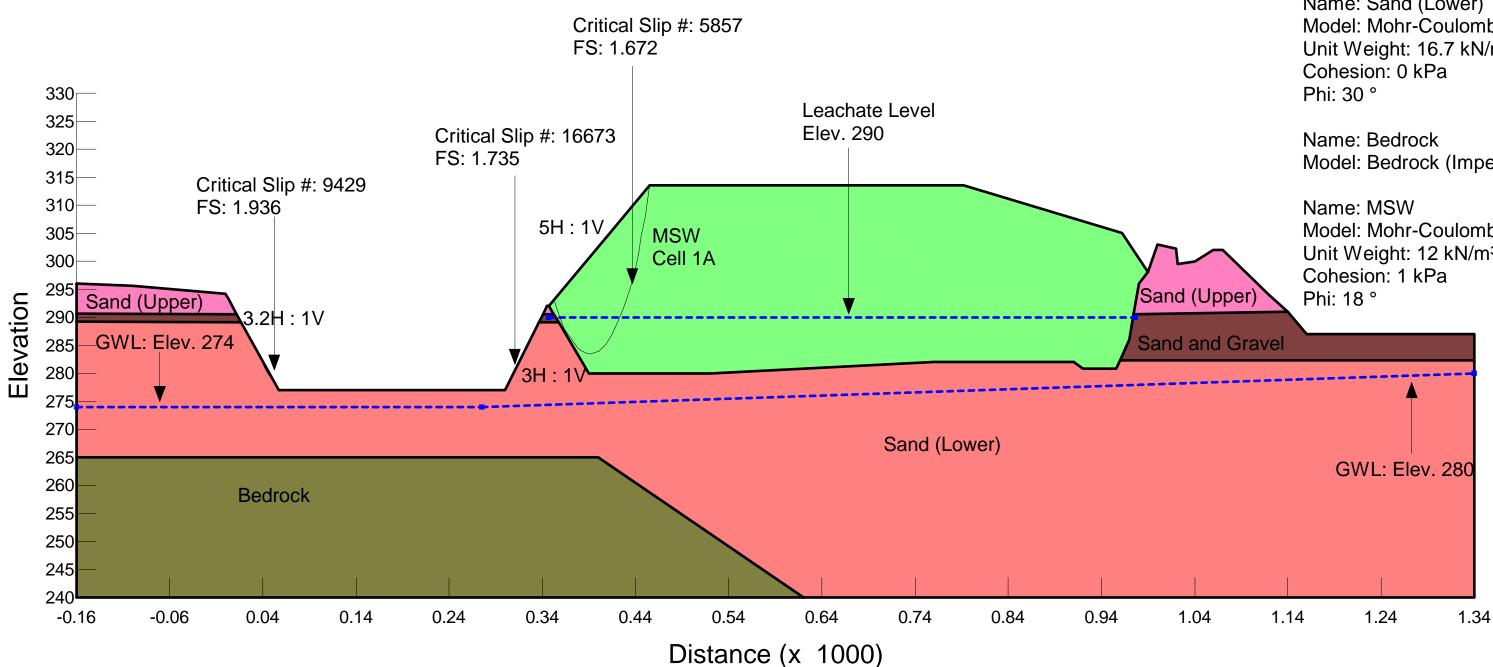
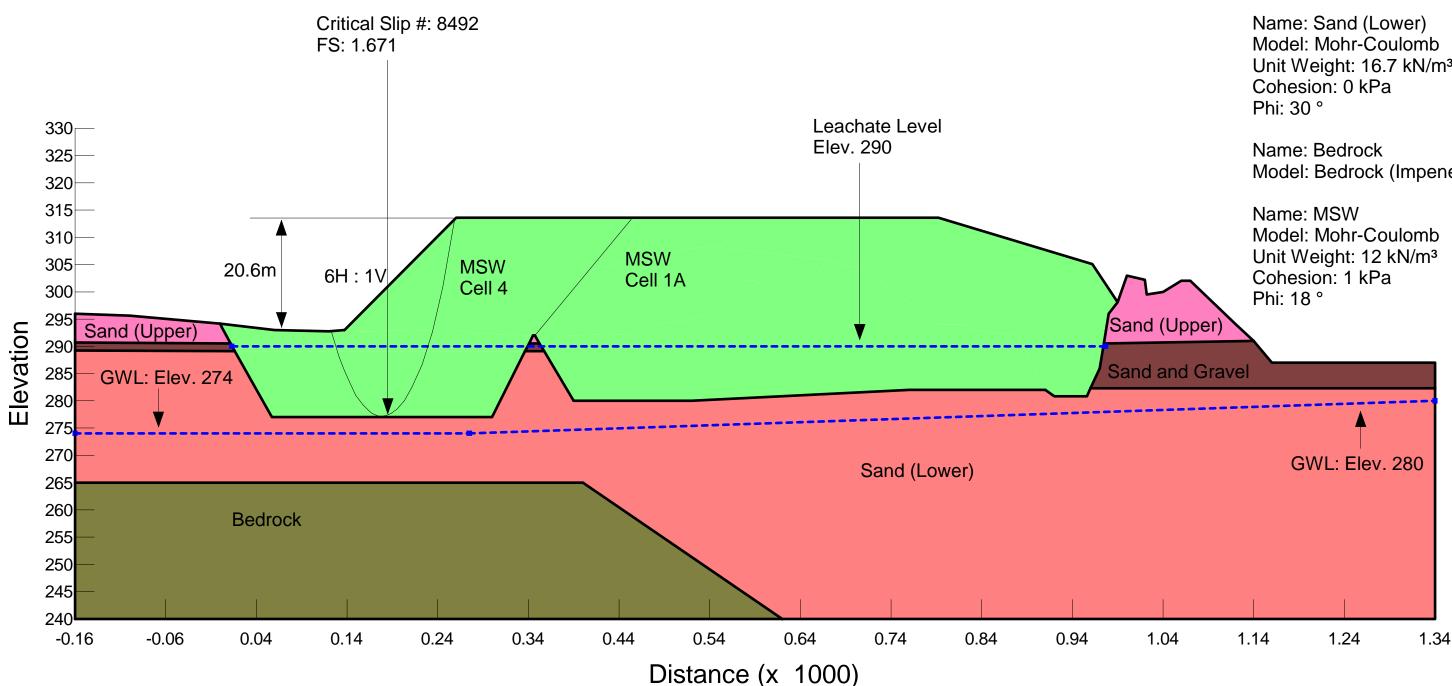

Note: Slip surface not visible due to scale exaggeration

Figure 17: Cell 4 Excation - Section A-A - 2011

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa Phi: 30 °

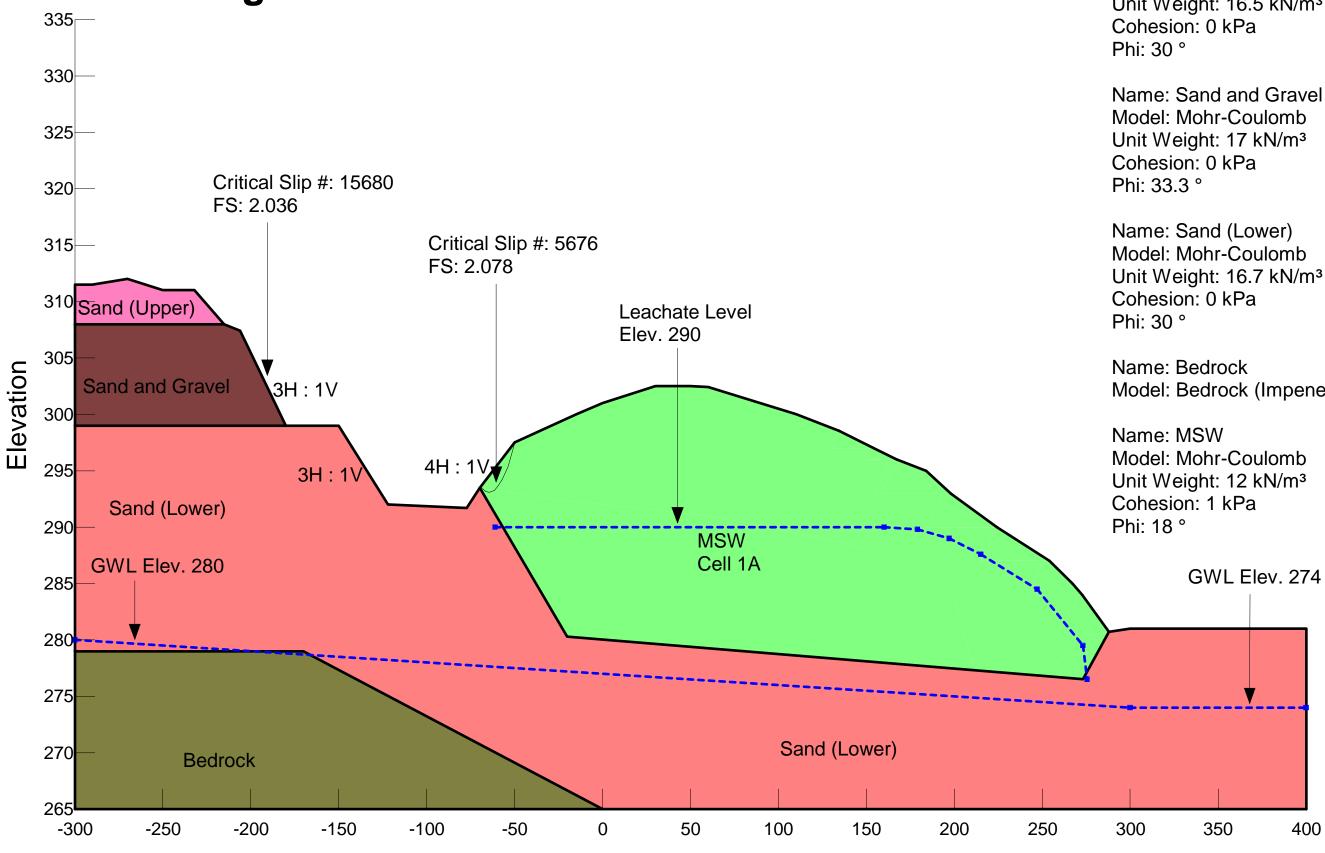

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Model: Bedrock (Impenetrable)

Model: Mohr-Coulomb Unit Weight: 12 kN/m³

Figure 18: Cell 4 Final Cover - Section A-A - 2011



Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa Phi: 30 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

Unit Weight: 16.7 kN/m³

Model: Bedrock (Impenetrable)

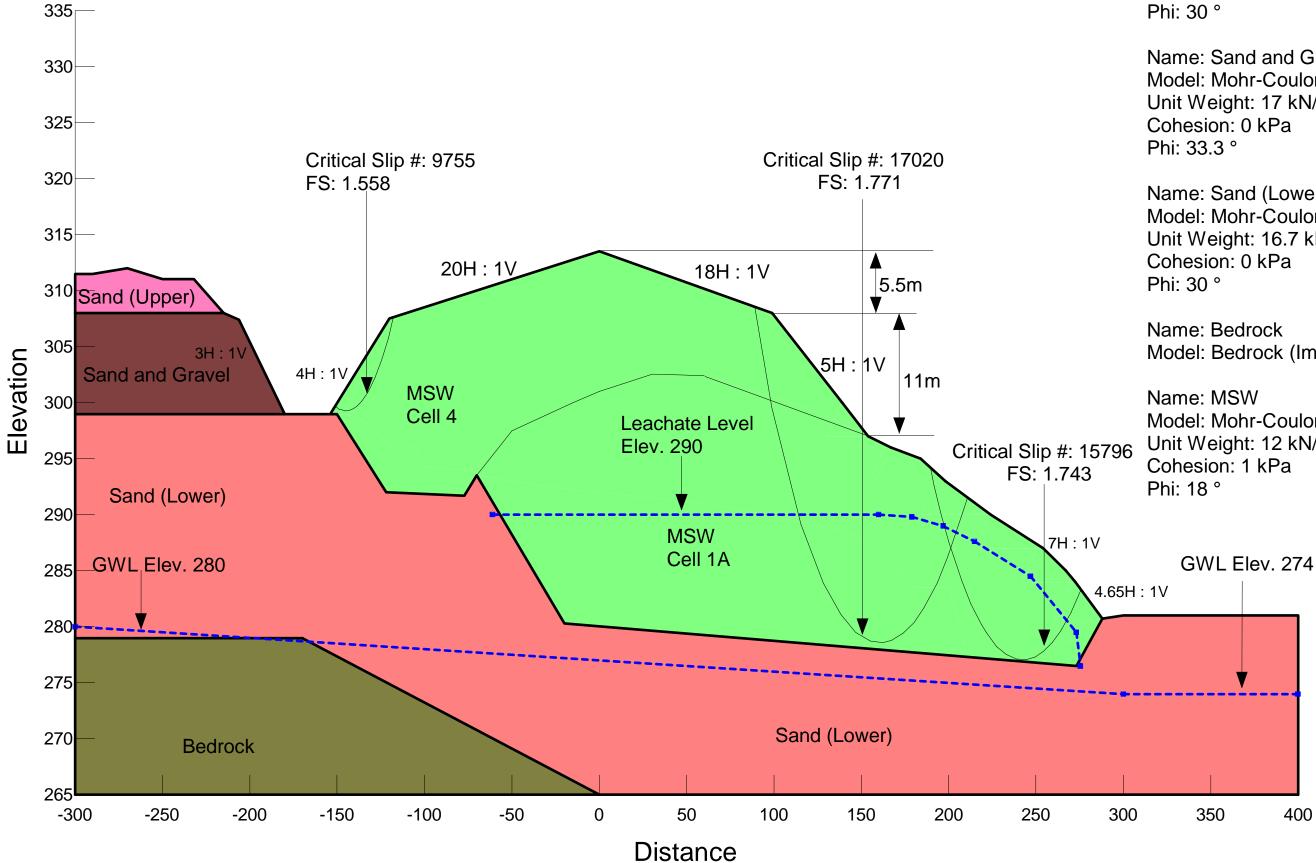


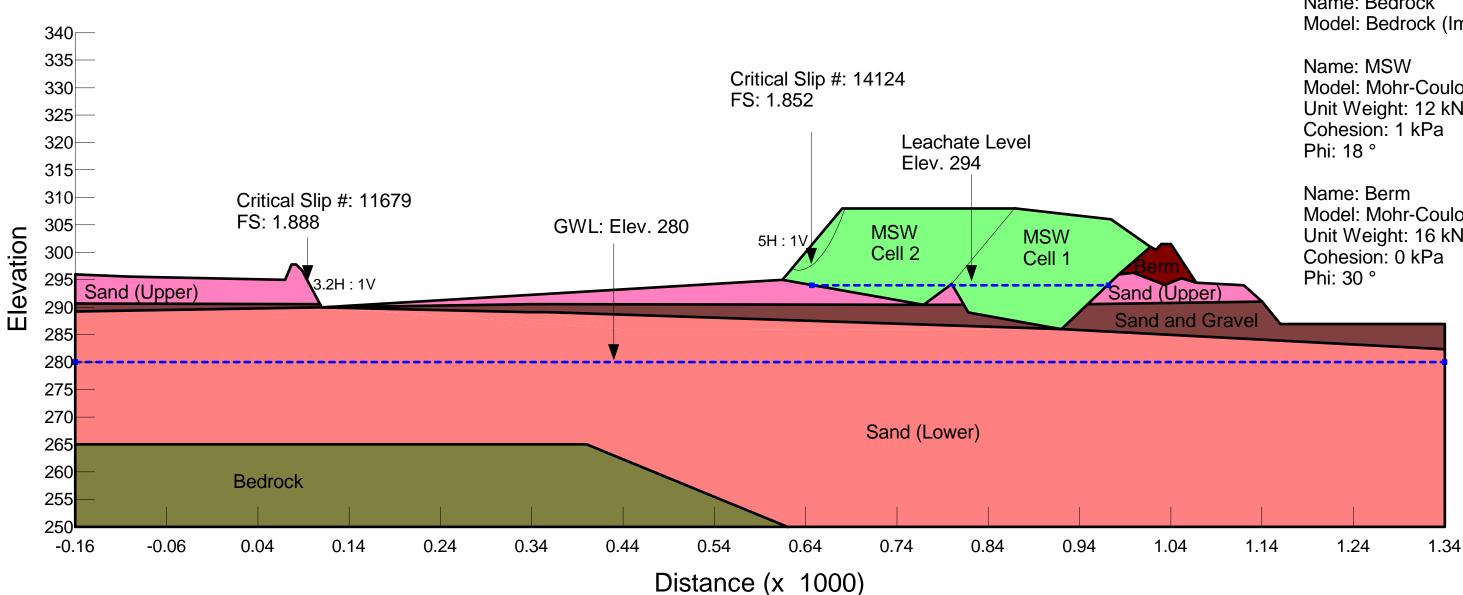
Figure 19: Cell 4 Excavtion - Section C - 2011

Note: Slip surface not visible in sand and gravel unit due to exaggerated scale Distance Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

Model: Bedrock (Impenetrable)

Figure 20: Cell 4 Final Cover - Section C - 2011

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa Phi: 30 °


Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³

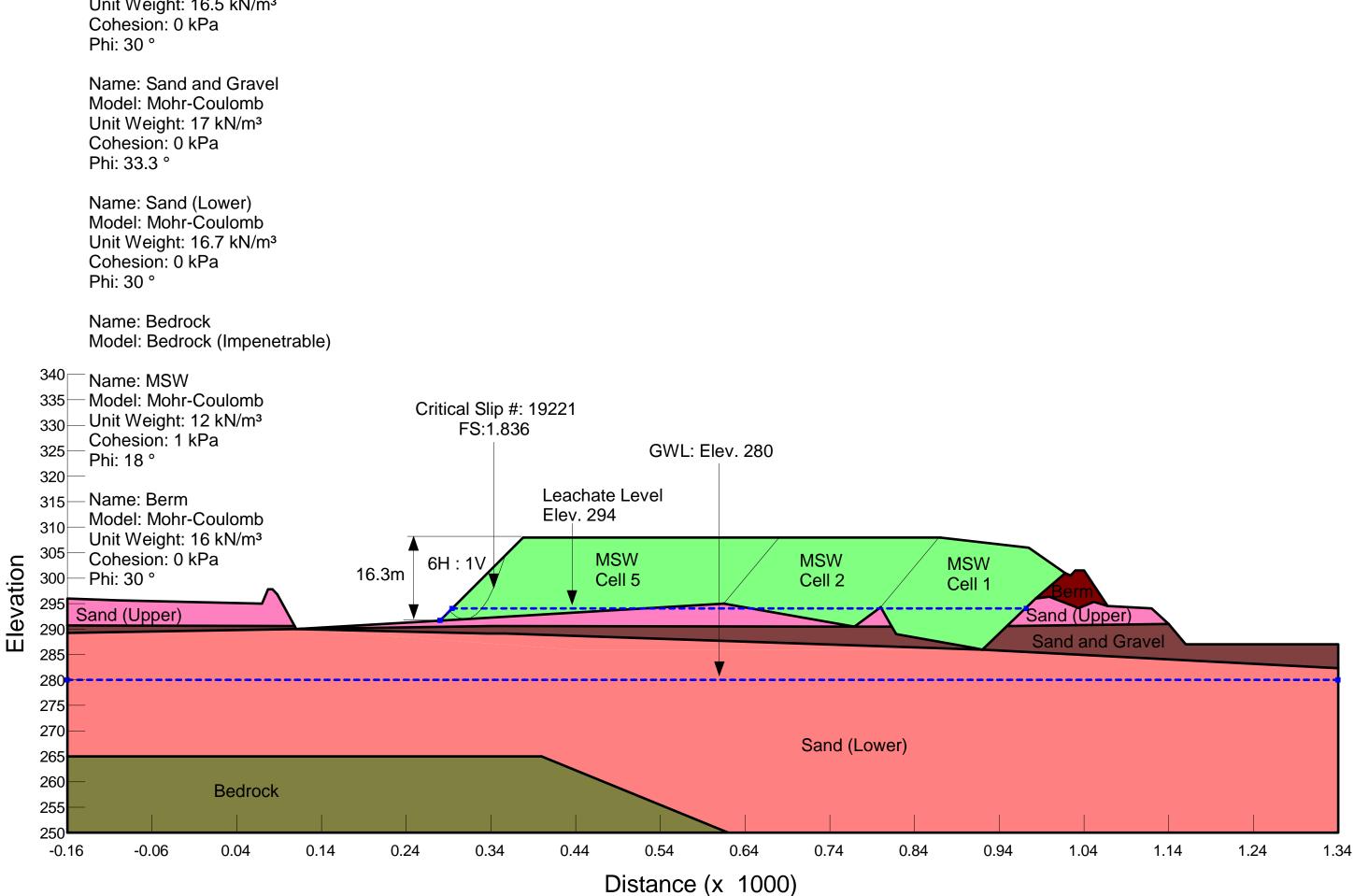
Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³

Model: Bedrock (Impenetrable)

Model: Mohr-Coulomb Unit Weight: 12 kN/m³

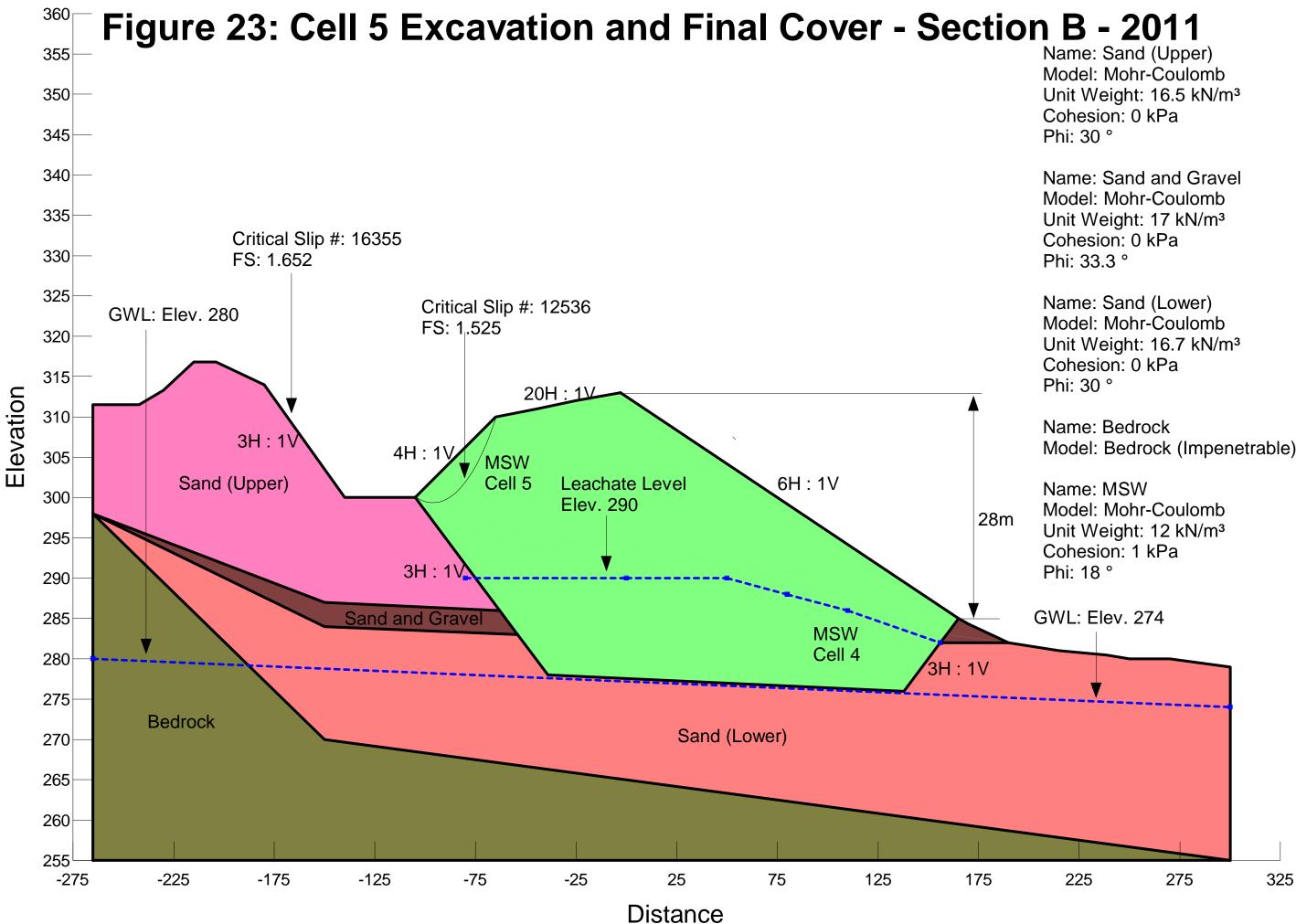
Figure 21: Cell 5 Excavation - Alignment 3 - 2013

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa Phi: 30 °

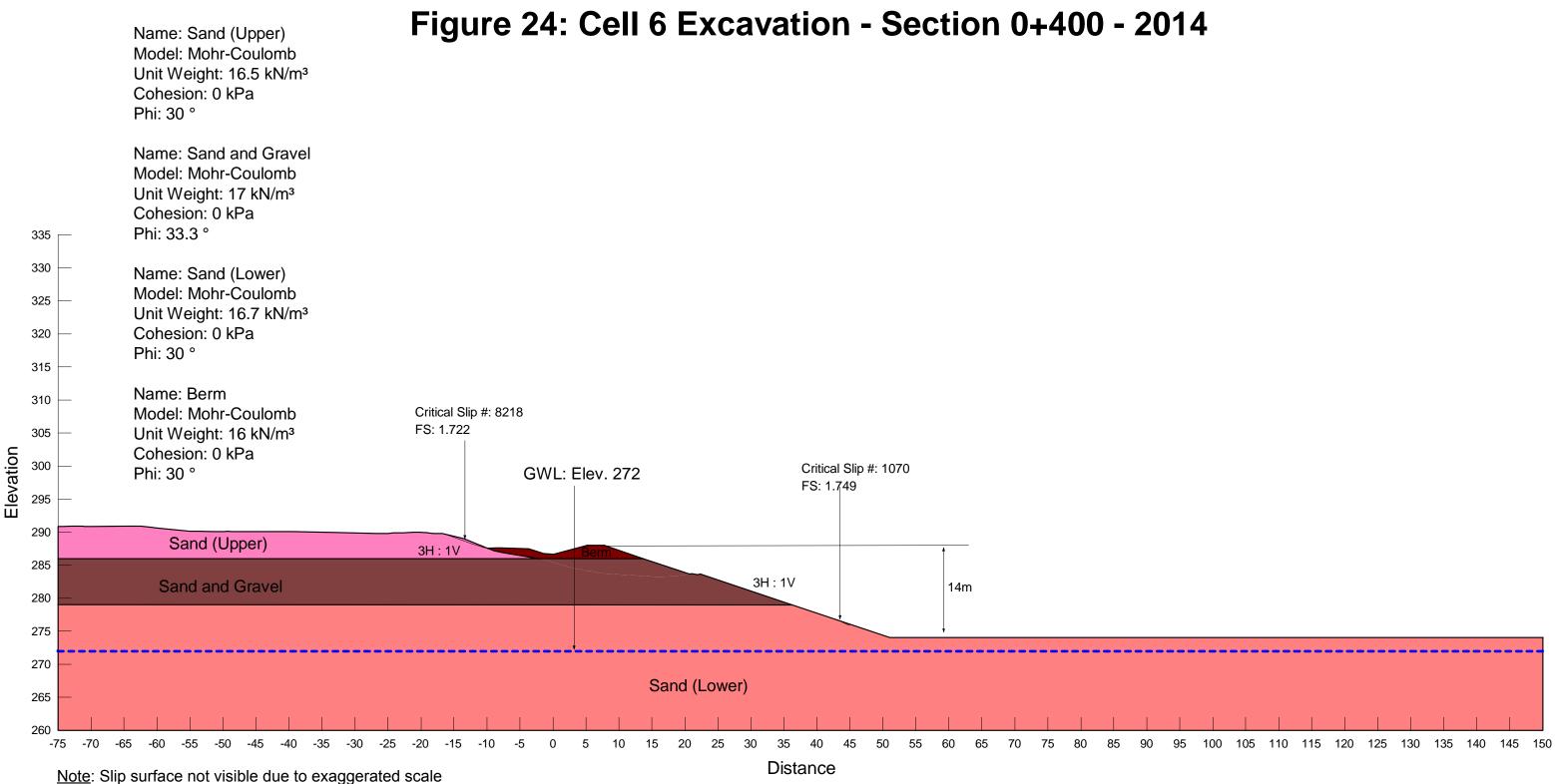

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³ Cohesion: 0 kPa Phi: 30 °

Name: Bedrock Model: Bedrock (Impenetrable)


Model: Mohr-Coulomb Unit Weight: 12 kN/m³

Model: Mohr-Coulomb Unit Weight: 16 kN/m³



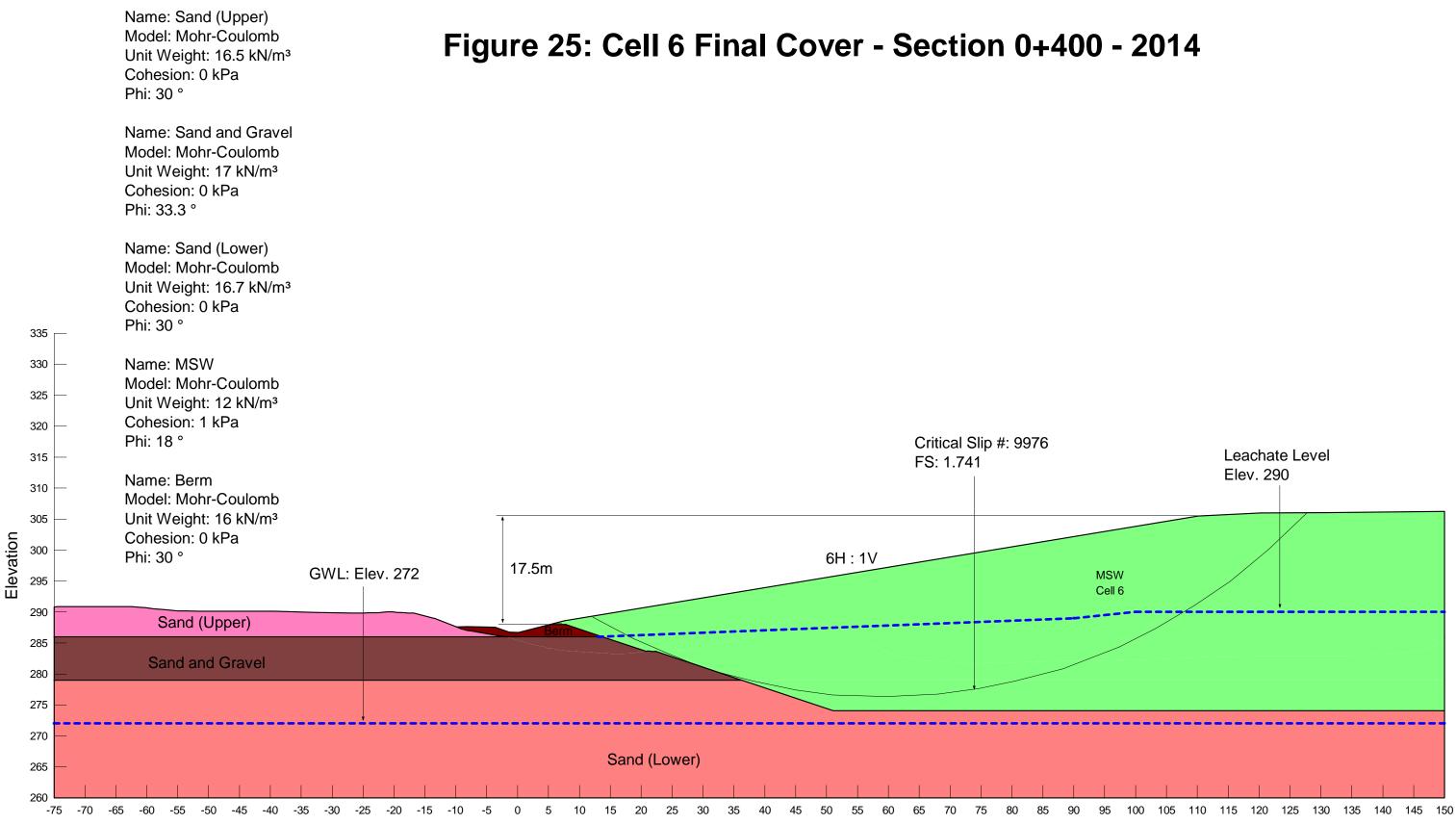
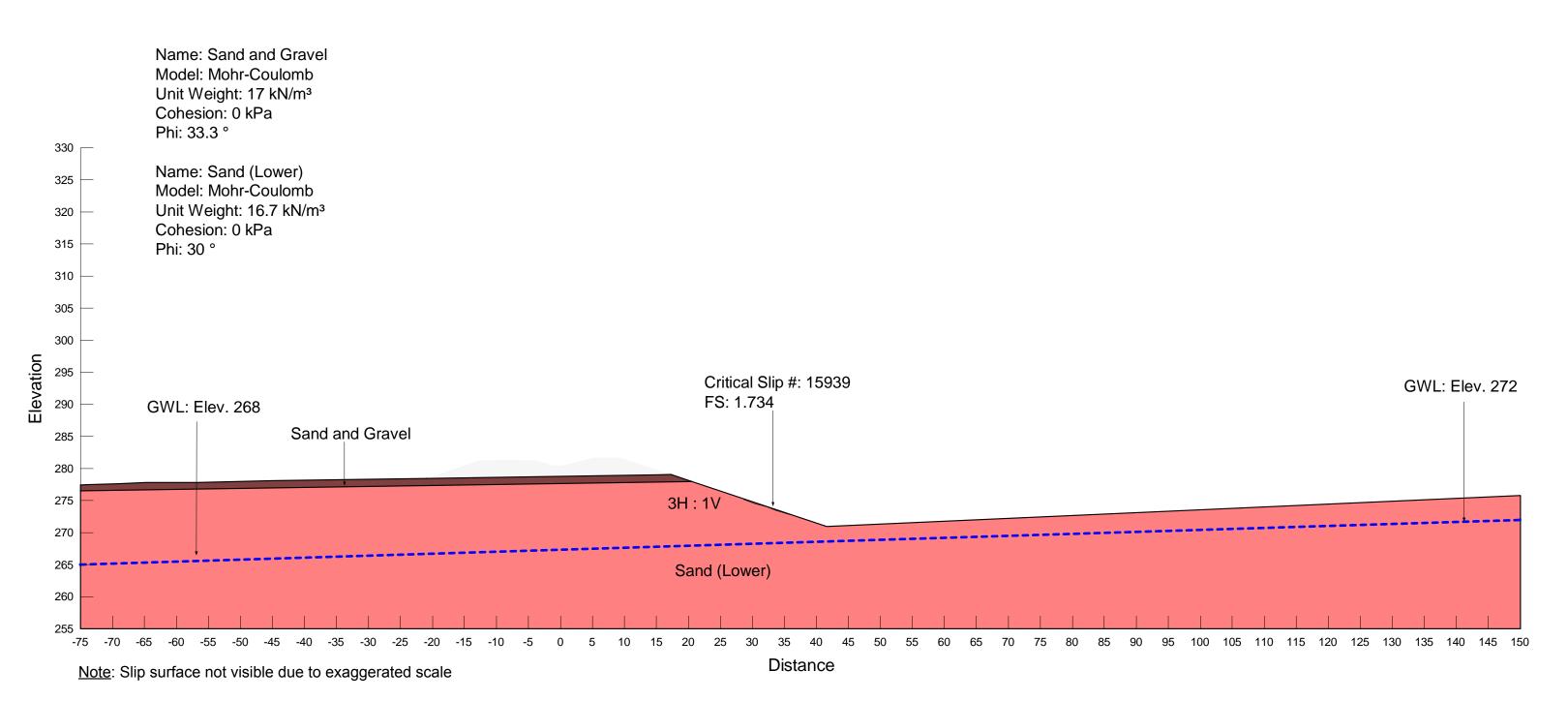

Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³

Figure 22: Cell 5 Final Cover - Alignment 3 - 2013


Model: Bedrock (Impenetrable)

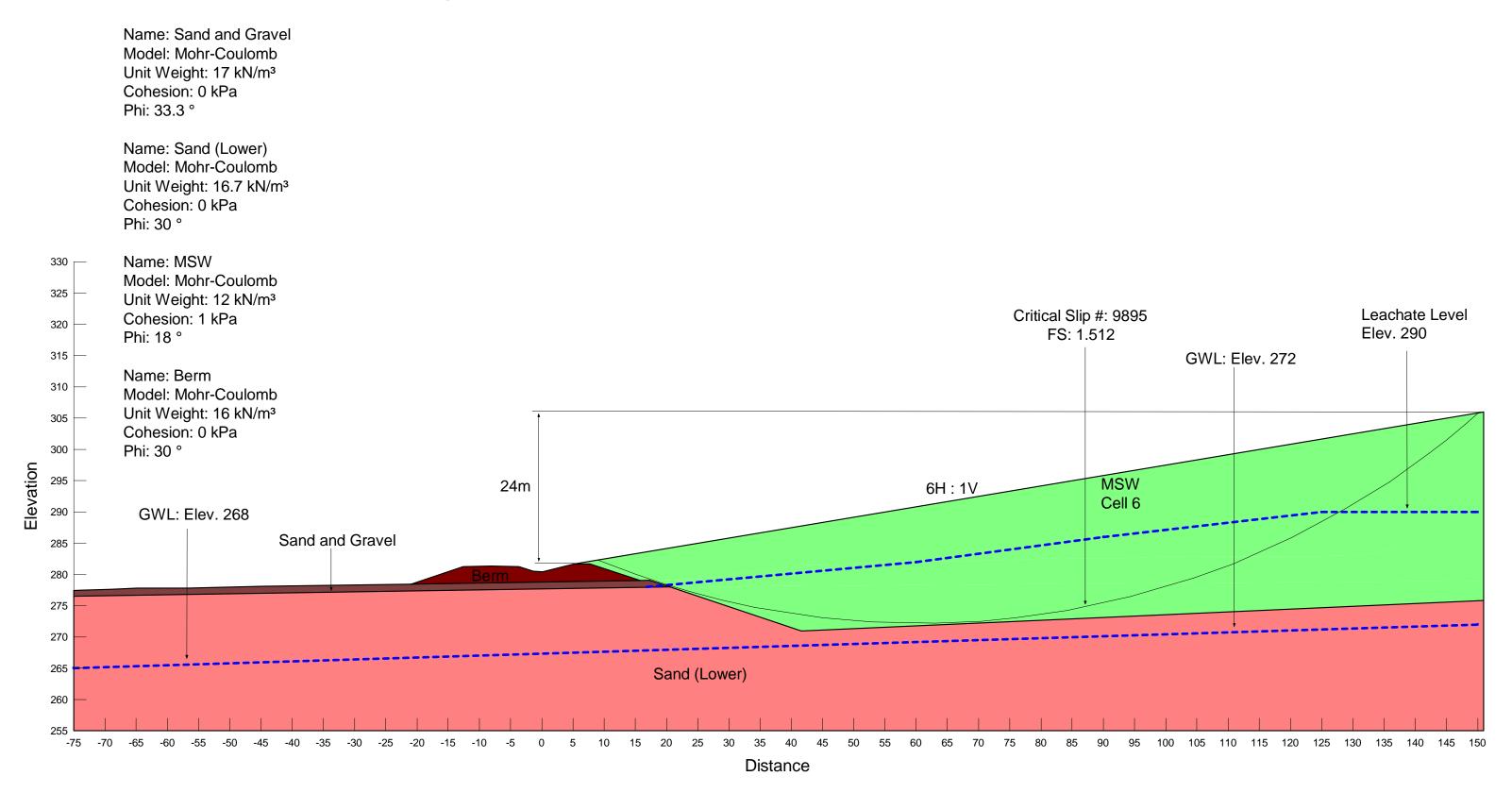

Distance

Figure 26: Cell 6 Excavtion - Section 0+200 - 2014

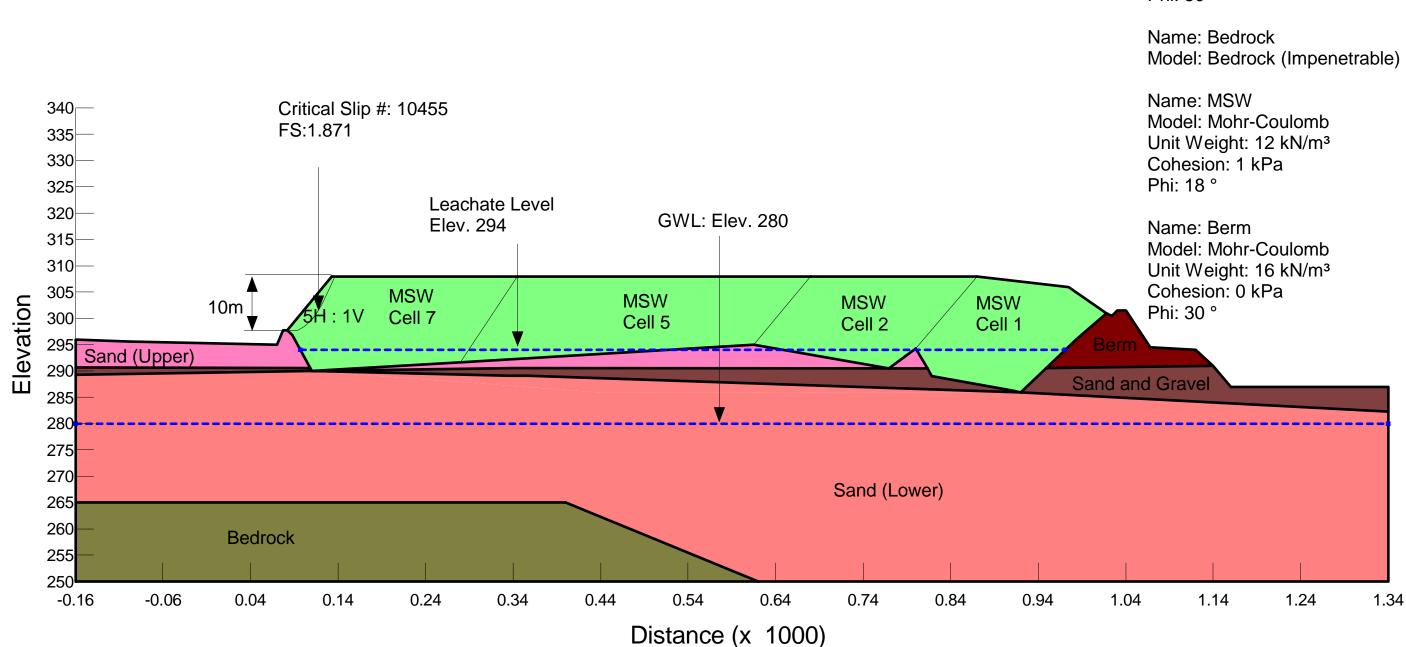
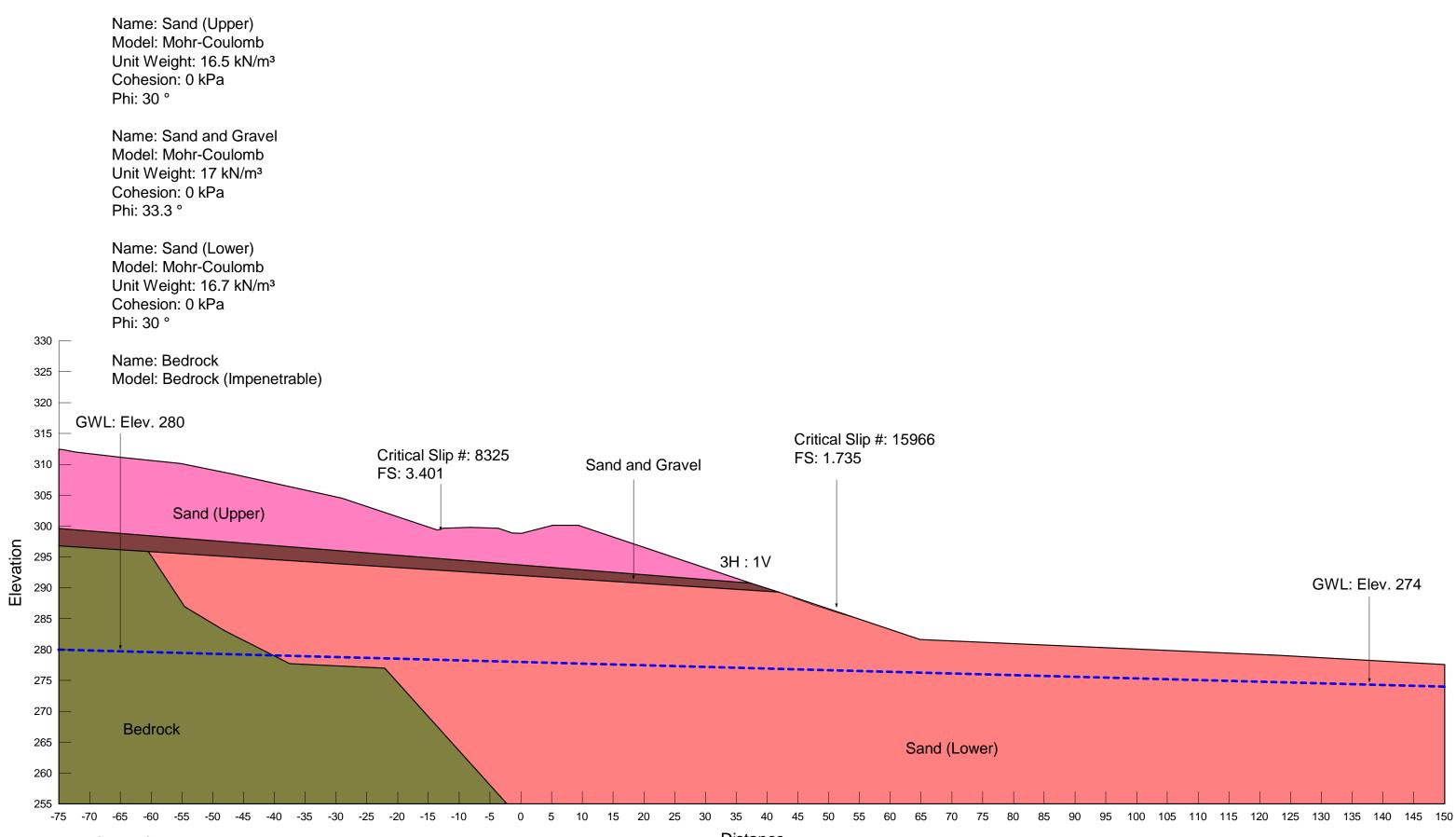


Figure 27: Cell 6 Final Cover - Section 0+200 - 2014

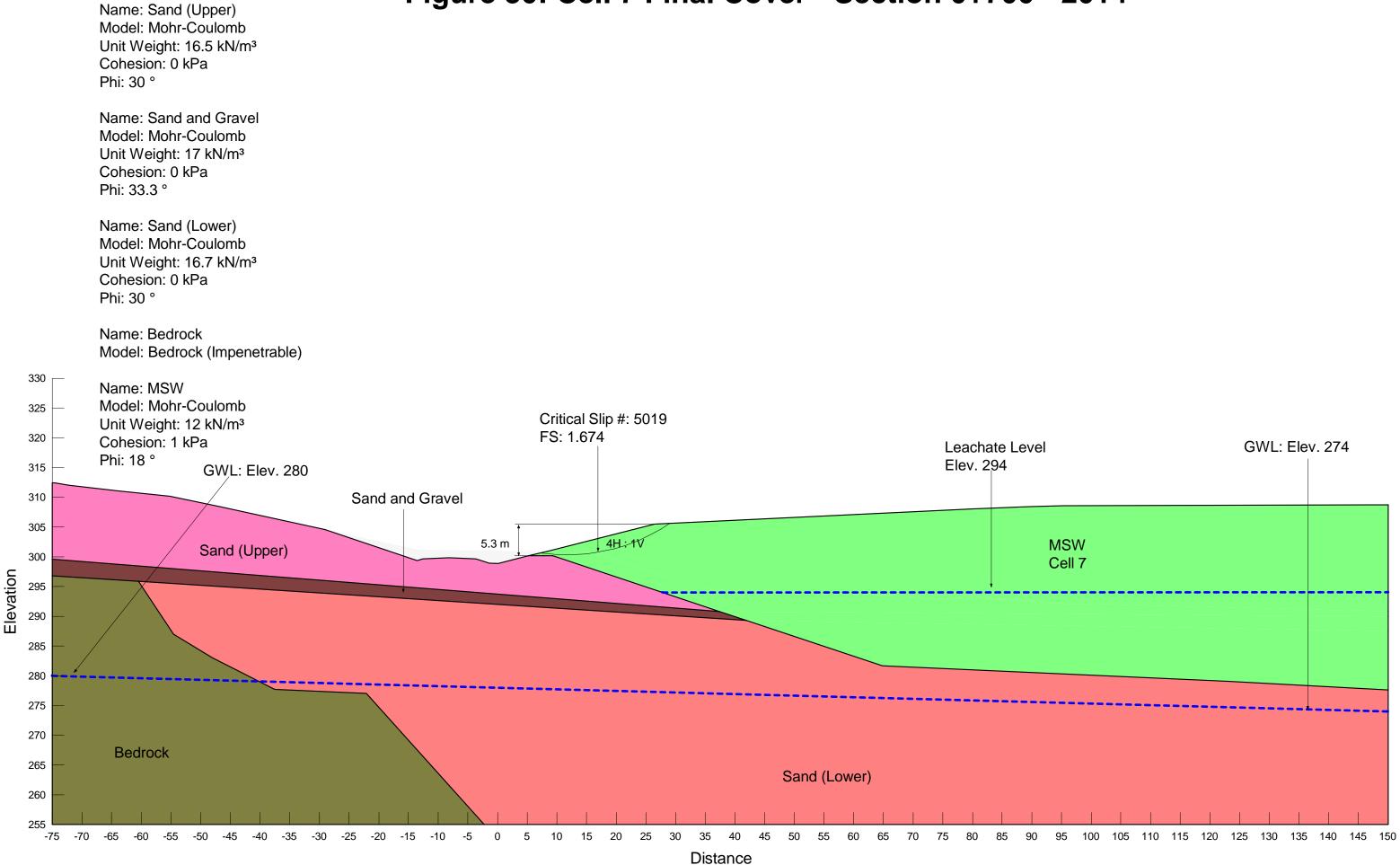
Figure 28: Cell 7 Final Cover - Alignment 3 - 2013



Name: Sand (Upper) Model: Mohr-Coulomb Unit Weight: 16.5 kN/m³ Cohesion: 0 kPa Phi: 33 °

Name: Sand and Gravel Model: Mohr-Coulomb Unit Weight: 15 kN/m³ Cohesion: 0 kPa Phi: 33.3 °

Name: Sand (Lower) Model: Mohr-Coulomb Unit Weight: 16.7 kN/m³ Cohesion: 0 kPa Phi: 30 °


Figure 29: Cell 7 Excavation - Section 0+700 - 2014

Note: Slip surface not visible due to exaggerated scale

Distance

Figure 30: Cell 7 Final Cover - Section 0+700 - 2014

